
Arindam Celko DM
Celko Idiocy (Second Shot)

Note
• Ok, he has fixed up the back-to-front issues, but the submission still fails
• Evidently, Celko does not understand SQL or Foreign Keys

• his DDL (which he demands of others!) fails
• Account_Emails FK (email_address, email_type) cannot Reference Email_Assignments (email_address): two columns vs one column
• He has building_nbr and building_id mixed up (error not shown; I have used building_id for sanity)

• The requirement Account has many Buildings is not supported
• Instead, he has a weird form via Rentals, where only Buildings that are Rented, are owned by an Account
• Therefore un-rented Buildings exist without Accounts, in Disneyland perhaps

• The email_type in Building_Emails and Account_Emails is redundant: we already know what type it is, simply by the fact that it is in the table it is in.
• As usual, he is trying weird functions via indices, without understanding either indices or relationships, which would provide the requirementin a straight-

forward manner
• "The UNIQUE is how you enforce a 1:M relationship with accounts and buildings" is hilarious. Er, no, we don't.
• In SQL we do that with a relationship, a Foreign Key in Building and some index (account_nbr, building_id),

• The index (account_nbr, building_id) or (building_id, account_nbr) is missing. The correct location for that is of course Building, not Rental.
• The PK in Email_Assignments is side-splitting. Listen carefully.

• Since email_address is unique, email_address plus anything will be unique
• it cannot be made more or less unique by adding email_type and another index
• Therefore the PK and second index are 100% superfluous
• Therefore it can be removed
• However, that requires formal implementation of the Subtype structure

• Last, but not least, the requirement (implicit, ala Account xor Build Email) is that an email can only be used once, in one Building xor one Account
• That is not supported

Accounts

account_type {1|2|3}
account_name
account_nbr

Famous Mistakes re Idiot "keys"
• Additionally, Celko makes the usual classic mistakes,

which people using Idiot RowIds make, over and over
again ... no amount of pointing that out seems to get
through to them:
• The RowId column (eg. building_id) does not

uniquely identify a row
• An index on whatever uniquely identifies a row is

required, eg (building_name). That is missing.
• Therefore building_nbr and its index is 100%

redundant, and can be removed
• Likewise for Account

Rentals

account_nbr
building_idEmail_Assignments

 {A|B}
email_type {A|B}
email_address AK

Buildings

building_type {1|2|3}
building_name
building_id

Account_Emails

email_type A
email_address
account_nbr

Building_Emails

email_typs B
email_address
building_id

Derek Asirvadem • 31 Jan 13 Arindam Celko DM • Celko Idiocy (Second Shot) • 1 of 3Copyright © 2013 Software Gems Pty Ltd

Arindam Celko DM
Celko Corrected

1 Let's assume Celko has a capable DBA who
understands the tomfoolery he is trying; has lots of
patience; makes appropriate corrections; and clarifies
the confused mess.

2 He realises that Celko does not understand row
uniqueness required for relational tables, and he
fixes that as well.

Accounts

account_type
account_name AK
account_nbr

Buildings

account_nbr
building_id

building_type
building_name AK

Email_Assignments

 {A|B}
email_type AK.2
email_address AK.1 Account_Emails

email_type A
email_address
account_nbr

Building_Emails

email_type B
email_address
building_id

Sub-standard
Negative Performance
• That "works", but with redundancies and extra

indices, that the formal structure does not suffer

Derek Asirvadem • 31 Jan 13 Arindam Celko DM • Celko Corrected • 2 of 3Copyright © 2013 Software Gems Pty Ltd

Arindam Celko DM
Progression to Standard

3 Next, the DBA realises that the redundant columns
and extra indices are intended to support a Subtype
structure, which if implemented correctly, eliminates
the redundant columns and extra index, so he decides
to implement it
(In order to provide the progression, I will show it in
incremets)

4 Let's correct the sub-standard naming

Account

account_type
account_name AK
account_nbr

Building

account_nbr
building_id

building_type
building_name AK

Email

 {A|B}
email_type
email_address Account_Email

email_address AK
account_nbr

Building_Email

email_address AK
building_id

5 The Exclusivity (which [1] has with extra indices,
and [3] does not have) is missing, so let's implement
it .
• And yes, it is all Declarative Constraints

6 When we do that, the PKs for Building_Email and
Account_Email with be reversed, because the
Subtype structure now becomes primary, so le't look
at the half-way point of that progression. Stated
another way, the order of the indices are reversed,
with no other changes

Account

account_type
account_name AK
account_nbr

Building

account_nbr
building_id

building_type
building_name AK

Email

email_type
email_address Account_Email

email_address AK
account_nbr

Building_Email

email_address AK
building_id

7 Now we have the formal structure, which supplies
exactly the same referential integrity as the obese
sub-standard structure, minus the extra columns and
indices.

8 But the tables names do not reflect the primary
relationship and subordination, so let's correct that.

Account

account_type
account_name AK
account_nbr

Building

account_nbr
building_id

building_type
building_name AK

Email

email_type
email_address

Email_Building

building_id AK.1
email_address AK.2

Email_Account

account_nbr AK.1
email_address AK.2

9 Now if the Account and Building Idiot "keys" were
elevated to Relational Keys, the result would be my
submission: Subtype Basics

Derek Asirvadem • 31 Jan 13 Arindam Celko DM • Progression to Standard • 3 of 3Copyright © 2013 Software Gems Pty Ltd

http://www.softwaregems.com.au/Documents/Student%20Resolutions/LinkedIn/Arindam%20Email%20DM.pdf

