
Sybase Data Storage
& Fragmentation

Software Gems Pty Ltd
Derek Asirvadem

V2.5
04 Sep 12

2 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
Introduction

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Sybase Data Storage
The elements of data storage units, their relations, and their types. This is a pre-requisite to the second part.

Units of data storage, their relations, the hierarchy

The five possible DataStructures that constitute a table, four of which are fully illustrated and examined

Explains the entities in the Sybase ASE catalogue that pertain to Data Storage

Presents all the elements relevant to Data Storage in the form of a Relational Data Model
Sybase Fragmentation
Definition & identification of the three distinct levels of fragmentation & the types within them;
determination of each level/type; followed by chapters for each level/type

Defines Fragmentation, Levels, terminology and differentiates the types

Guidance on the accurate determination of each Level/Type of Fragmentation

Identifies Fragmentation in AllocationUnits & Extents within AllocationUnits

Why Drop-Create Clustered Index does not return Asynch Pre-Fetch & Large I/O

The value of Segments

Identifies and discusses Fragmentation in the Page Chain

Identifies and discusses Fragmentation in Overflow Pages

Identifies Fragmentation in Unused Space in Extents

Identifies Fragmentation in Unused Space in Pages

Identifies Level III Fragmentation (DOL only): Rows within Pages, displaced rows

Compares APL vs DOL from an Index Type perspective.

Document Status
What was once a few single pages made available on the web, due to interaction with the Sybase community, has been consolidated into a single
document, and expanded. It remains a collection of diagrams from our course documents, a terse, condensed, diagrammatic style; rather than one of our
usual polished final documents, that some of your have come to expect. Progress (adding diagrams and explanatory test) is made between assignments,
based on questions and feedback received.

Version
V2.0 12 Sep 11 Consolidation of three previous docs; full exposition to 14 pages; first open publication; enabled HTML Image Map
V2.5 28 Mar 12 Data Storage (now 9p); Definition & Determination added (8p); Fragmentation (now 12p); PDF version (now 31p).
It is valid for Sybase ASE versions 12.5.4.x and 15.x. Yes.

Copyright
The entire document is the property of, and copyright, Software Gems Pty Ltd. It is provided free of charge to assist the Sybase community in server
and database administration, where no fee is charged. Permission is granted to copy or distribute this document, as long as it remains unaltered; with
the copyright notice intact; due credit is given to the author; and the distribution and ensuing consultation remains free. Contact us re commercial use.

Moral Right & Contact
The author is Derek Asirvadem, Information Architect and Sybase performance specialist, he is solely responsible for the content. He welcomes
constructive commentary and answers questions for professionals (click the link at the bottom of the page).

Purpose
1 This Software Gems document defines the physical elements of a Sybase ASE database; assists in the understanding the terminology in the manuals,

and the operation of ASE. Indeed, it overcomes the problem of abysmal manuals in that subject matter.
2 There is an awful lot of shallow, inaccurate, misleading and false information on the Internet. Unfortunately some of that false or misleading

information is published by Sybase, both in the manuals, and on the web. This document is therefore rendered to provide full and complete
information (albeit very condensed), such that the reader is no longer vulnerable to false or confusing information on the subject.

Structure
This document combines three closely related HTML documents into a single PDF, and resolves the links. It remains in three Parts, with a single
numbering scheme (19 chapters) throughout (Levels are numbered in Roman numerals). When it is relevant, the section presents APL vs DPL/DRL
LockSchemes separately. The definitions are Normalised, and cross-referenced. Virtually all objects can be selected, to open further detail.

Education
• This document is actually a consolidated version of

a selection of the Memory Tag pages from our
courses.
• We do not provide ordinary SQL and Sybase

courses, there are many providers.
• However, as true performance experts, we provide

specialist Sybase Quality & Performance courses
at both the DBA and Developer level, which
allow you to take full advantage of your software
investment.

• We also provide high performance, standard-
compliant Relational Database Design and
education.

• There is no substitute for formal, qualified
education. Please inquire if you need further
detail, or you have an interest in improving your
Sybase performance or SQL coding.

• As such, they are detailed, very condensed and
complete, but of course, the scope is limited.

Manual
These documents are provided to complement the
Sybase manuals, and to correct them, as follows:
• they contain information that is not in the manuals

(ie. they overcome the lack of information)
• where the manuals contain contradictory

information, the correct version only, is provided,
the goal is to eliminate confusion and half-truths !

• where misleading or false technical terms are used,
correct technical terms are used instead

• they bring all the relevant information about a
subject together, in one place

Level II Level III Partition

1 Unit

2 DataStructure

3.1 Heap

17 III Page

8 I Allocation Unit

9 I Drop-Create

10 I Segment

12 II Page Chain

14 II Unused Space/Extent

15 II Unused Space/Page

3.2 Clustered Index
3.3 Nonclustered Index
3.4 Placement Index

4 Data Model/Catalogue

5 Data Model/DataStruct

13 II Overflow Page

7 Determination Level I

6 Definition

19 Index Type

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 3 of 32

Sybase Data Storage & Fragmentation
1 Data Storage Unit

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

1 Device
1 Segment
1-32 DataStructures

1 Device
s Segments
d DataStructures

v Devices
s Segments
d DataStructures

Deleted Row
Forwarded Row

Text/Image Chain
• The entries are the content

of a single Row/Column
• Allocated in units of Pages

Rows

1 DataStructure
1 of 5 Types

Clustered Index
• Index/Row Order maintained
• Rows shifted on Expand/

Contract/INSERT/DELETE
• Heap eliminated
• Page Splits when Full for

interspersed INSERTS

AllocationPage
For each Extent [32]:

ObjectId
IndexId
PartitionId
UsedPages
FreePages
▶OAMPage

32 Extents, 256 Pages, 512KB

Extent

AllocUnit

Db Allocation
[DevFragment]

specified in MB

Database specified in MB

Page

8 pages

A

DOL Heap (Always)
• RowIds do not change
• DELETES Marked but not

Removed
• Expanded Rows Forwarded
• Interspersed INSERTS at end
• No Clustered Index

APL Heap (When No CI)
• Rows shifted on Expand/

Contract/INSERT/DELETE
• Chronological Order
• INSERTS at end

Nonclustered Index
(including Placement Index)
• Index Entries & RowId
• Entries shifted on

INSERT/DELETE

An Object (the physical term, as in ObjectAllocationMap) is a discrete
DataStructure, identified by ObjectId, IndexId and PartitionId.
(An ObjectId alone identifies the table, which is not a DataStructure.)

First we need to understand the different Data Storage Elements, what they contain, how they relate to each other, and their Units of
Measure. This is presented in its natural hierarchy, from top to bottom, largest to smallest, and identifies the Pages used to control space management.

• Just as the first Page of an AllocationUnit is the AllocationPage, the first Page of a DataStructure is the
ObjectAllocationMap

• It contains a linked list of the AllocationUnits in which Extents belonging to the DataStructure reside.
• The AllocationPage of each AllocationUnit is then interrogated to locate the Extent.
• The AllocationPage identifies which Extents & Pages have free space. If such exists, this allows rows in the

DataStructure to be placed close to other rows, however it is quite independent of rows in other DataStructures.
• If more than one Page is required for the OAM, a linked list of OAMs is provided
• While the OAM provides a second access path to the DataStructure, it is especially relied upon during Table Scans of

DOL Heaps, since they do not have PageChains.

1.2 ObjectAllocationMap

In order to administer Sybase ASE, the above Data Storage units need to be understood, and they are covered in detail in the following pages. In order to
complete the picture, however, there are two more Pages that are used to manage space efficiently (these are not expanded):
• GlobalAllocationMap

Contains space usage bits (Used/Free) for all AllocationUnits in the database
• PartitionControlPage

Each Partition has an additional Page identifying free space

1.3 Other Control

Pages

ObjectAllocMap
▶AU0 ▶A ▶Extent
▶AU256 ▶A ▶Extent
▶AU1024 ▶A ▶Extent
▶AU512 ▶A ▶Extent
▶AU1280 ▶A ▶Extent
▶AU768 ▶A ▶Extent

O

• The first page of each AllocationUnit contains the AllocationPage, it identifies:
• the 32 Extents that it contains
• the Physical DataStructure residing in each Extent (identified by ObjectId, IndexId and PartitionId)
• pointers to the OAMPages of those 32 Physical Datastructure, and
• the space available in each Extents, and in each Page of each Extent.

1.1 AllocationPage

Intro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefnDataStruct

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

4 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
2 DataStructure

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

4. Partitioned DataStructure
There are, therefore, five types of Physical DataStructure, and the Heap or the CI may be Partitioned.

5. In summary, a DataStructure is
• an independent Data Storage structure that is

• first, belongs to a Table (ObjectId)
• second, one of five logical types (IndexId)
• third, a physical structure, which may be a Partition (PartitionId)

1 Heap xor 1 Clustered Index

This chapter introduces Sybase ASE DataStructures, again in logical order, and illustrates how they relate to each other.
1. Table

• a Table has a single entry in sysobjects WHERE type U
• the Primary Key is (id), as in OBJECT_ID()or ObjectId
• a Table is a collection of Logical DataStructures

2. Logical DataStructure
• each Logical DataStructure has a single entry in sysindexes, which defines its logical structure, keys, etc
• the Primary Key is (id, indid), indid identifies the DataStructure Type

• There are five types of Logical DataStructure (the APL Heap and DOL Heap are very different, as detailed in the next
chapter):

Logical
DataStructure

Type

sysindexes.
indid

sysobjects.
id/U

1
means CI (No Heap)

Clustered Index
• Eliminates the Heap

0
means Heap (No CI)

DOL Heap
• Always

Text/Image Chain
• one for all Text/Image

columns in the table

255
means Text/Image Chain

1

2 to 250
means NCI

Nonclustered Index

249

During the discussion of logical or
physical DataStructures, non-
technical terms such as

'table',
'base table' and
'object-index pair'

 are too ambiguous to be meaningful:
those who use them are committed to
your continued confusion.

Partitions

DOL Heap Partitionsyspartitions.
partitionid Text/Image ChainNonclustered IndexCI Partition

Partitions

3. Physical DataStructure
• each Logical DataStructure is rendered physically as one or more Physical DataStructures

• the Heap or Clustered Index, which contains data rows, may be divided into several Physical DataStructures, called Partitions
• the Nonclustered Index and Text/Image Chain are not Partitioned

Allowed

The catalogue tables may be easier to
understand if they had been named:
• sysindexes

sysLogicalStruct
• syspartitions

sysPhysicalStruct

0
means Heap (No CI)

APL Heap
• Only when no CI

Partitions

APL Heap Partition

1

sysindexes.
indid

LockScheme

Table

DPL/DRL APL Any

Text/Image ChainNonclustered Index

• each Physical DataStructure has a single entry in syspartitions, which defines its physical structure, Data Storage location, etc
• hence the silliness in the manuals that "unpartitioned objects have one partition"

• the Primary Key is (id, indid, partitionid)

UnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 5 of 32

Sybase Data Storage & Fragmentation
2 DataStructure

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

data_09

data_01 data_02 data_03temp_01 log_01Device

logsegmentindex_seg

default

data_segsystemlogsegment

default

system

data_04

text_seg

Segment • default is not a segment: it is the
segment one has when one does
not have segments.

• Much like public is not a group:
it is the group one belongs to when
one has no group.

• Or one is the number of partitions in
an unpartitioned DataStructture.

Database tempdb user_db

• Each Device is a separate I/O
queue within the server

• It is therefore best to use neither
too few Devices, nor too many,
based on the size of each database.

6. The five types of Physical DataStructure, the first three of which may be Partitioned, are located on Devices, which are identified by Segment:

Partitions

DOL Heap Partitionsyspartitions.

partitionid
Text/Image ChainNonclustered IndexCI Partition

PartitionsPartitions

APL Heap Partition

sysindexes.

indid

1. This is an introduction to Segments and Devices; it is not a full exposition.

Text/Image ChainNonclustered Index

A Sybase Device 1 is one of the following. Note that ASE treats it as a contiguous set of disk blocks:
• File
• Raw Partition
• Logical Volume (SAN or Volume Manager), which is a File or Raw Partition
Devices are server-level resources: part or all of a Device is allocated to a single Database.

2.2 Device

A Segment 1 is a logical group of one or more Devices, within a database. A good Segment Plan has two fundamental purposes:
1. It allows DataStructures to be distributed for load balancing purposes:

• separating the data (CI or Heap) of a single table from its related NCIs
• separating the different tables within a Transaction
• separating the Partitions of a table, in order to support full parallelism

2. It drastically reduces Level I and II Fragmentation, which would otherwise be massive.
3. Either a Logical DataStructure (all Partitions in the DataStructure) or a Physical DataStructure (a single Partition) may be placed on a Segment.

• placing all the Partitions of a DataStructure on one Segment/Device has the same I/O contention as an unpartitioned DataStructure (shown)
• placing each Partition of a DataStructure on a separate Segment/Device eliminates that contention, and maximises parallelism (not shown)

2.1 Segment

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

6 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
3.1 Heap

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Row Row

Heap

Heap (When No Clustered Index) Fresh

Page
Chain

Heap (Always) Fresh

Heap

ObjectAllocMap
▶AU512 ▶A ▶Ext

H

indid = 0

DataPage/DataRow LockedAllPage Locked

indid = 0

This chapter discusses the APL Heap and the DOL Heap, and their characteristics.

• Table scans via PageChain
• INSERTS are placed at the end of the Heap
• Pages are kept trim; rows are contiguous

• Rows within the Page are shifted upon DELETE and UPDATE
(Row Expansion/Contraction)

• Row Expansion may cause it to be moved to the end of the Heap,
changing the RowId)

• If there are NCIs, the RowIds need to be updated

No Page
Chain

Scans
via OAM
Method

ObjectAllocMap
▶AU768 ▶A ▶Ext

H

• Table scans via OAM method only
• RowIds do not change

• Deleted rows are marked for delete but not deleted (they are deleted,
and the space is reclaimed, during REORG or aggressive Garbage
Collection)

• If space is available in the current Page or Extent of the Heap (as a
result of reserving same), the Forwarded Row or interspersed INSERT is
placed there; otherwise (the usual case) it is placed at the end of the
Heap. The intended and actual locations are nowhere "near" the
original location and nowhere "near the Placement Index, refer to
section [] and []. Forwards accumulate in Overflow Pages.

• When a row is Forwarded, the NCIs (including the PI) must access the
original location, to obtain the forward address, then access the
Forwarded Row.

• Contracted Rows are not repatriated

Page Unused Space

Rows

• All the Nonclustered Indices belonging to an APL table are
Clustered Index based (RowIds may change); there are Heap-
based (RowIds are static) only when the CI is absent

• The creation of a Clustered Index eliminates the Heap; dropping the
CI returns the Heap

• This illustrates a Heap, which occurs only when the Clustered Index
has been actively avoided

• Except when used as 'pipes' or 'queues', APL tables should always
have a Clustered Index

• DOL tables always have a Heap
• RowIds do not move, they are Static (except during REORG of course)

• All the Nonclustered Indices (including the Placement Index) belonging
to a DOL table are Heap (or Static RowId) based

• It is a mistake to view the DOL Heap as PI based, since all the NCIs
(including the PI) are dependent on the Heap, not other the way around.
The NCIs cannot change because the Heap cannot be changed.

• By design, the Heap and any NCIs (including the PI) are logically and
physically separated, in order to reduce dependencies

Forwarded Row (originl location)

Deleted Row

Forward (new location)

Heap (Always) Fragmented

Heap

Forwarded Rows

Forwards:
Overflow
Pages

Deleted Rows
Heap

Heap (When No Clustered Index) Fragmented
Rows are

shifted upon
DELETE or
UPDATE

INSERTed
Rows at End

INSERTed
Rows at End

• This leads to Unused Space, but the
DataStructure retains its speed and
traversal capability

• This leads to substantial Unused Space,
which cannot be used for new rows; the
DataStructure cannot retains its speed

• There is no traversal capability, the
OAM method must be used

No Page
Chain

9.58.3

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

Overflow Pages

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 7 of 32

Sybase Data Storage & Fragmentation
3.2 Clustered Index

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

Page Chain
at Every

Index Level

Clustered Index (Heap Eliminated)

Leaf Level
is Data Row

• The Index B-Tree is clustered with the data rows, into a single
DataStructure
• The Leaf level of the B-Tree is the data row (put another way,

there is no Leaf level, the B-Tree is clustered with the data rows)
• Creation of the CI eliminates the Heap; dropping the CI returns

the Heap
• One less logical Read on every access
• There are still two OAMs to allow independent access

• All the DataStructures belonging to an APL table are Clustered
Index based
• Index order = Row Order
• Rows are distributed as per Index Key, and remain so

• Designed for
• Relational Keys (compound or composite keys)
• Range Queries

• INSERTS into Key location:
• For Interspersed INSERTS, if the page is full, a Page Split is

necessary, and the RowIds (in the split Page) which are
referenced in any NCIs must be updated

• Pages are kept trimmed
• On Expand/Contract/INSERT/DELETE Rows in the CI may be

shifted within a Page, without additional overhead, maintaining
free space in the page

• According to the Relational Model, rows in a table must be unique.
The Clustered Index is designed for Relational tables, and to be
unique, and therefore should be
• Non-unique keys cause .

B Tree

Clust
Index

Leaf Page

 Rows

DataPage/DataRow LockedAllPage Locked

This section discusses the Clustered Index, and its characteristics.

Leaf Level
Row

indid = 1

B-Tree Entry

ObjectAllocMap
▶AU512 ▶A ▶Ext

DB

(None)

• Despite the demanded "clustered" syntax, there is no such thing as a DOL
"clustered" index or DOL "clustered" table. The DataStructure addressed
in is fact a .

• There is nothing remotely like the Clustered Index available for DOL
tables.

Clustered
Index is
Sparse

A man and a woman are meant to be married; together they achieve more
than each achieves separately. Implementing APL tables without a Clustered
Index, is analogous to a divorced couple. Likewise, there is no fidelity in
non-unique Clustered Indices .

Confirmation
If anyone suggests that DOL "clustered" indices do exist, run this
simple query on a database that has both APL Clustered Indices and DOL
"clustered" indices. Study the DataStructure chapter, along with the
report, and ask them why, as far as Sybase ASE internally is concerned:

• Clustered Indices always appear without a Heap
• Heaps always appear without a Clustered Index
• Placement Indices are Nonclustered Indices
• Placement Indices always appear with a Heap (which means they are

two separate Logical, and therefore Physical, DataStructures)
Such persons evidently have little technical knowledge os Sybase.
All the technical evidence from all the functions and catalogue
components, is consistent. Even a simple query demonstrates the truth. It
can be extended to show other items as desired.

simple query
DataStructure

Overflow Pages

Placement Index

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Article/Placement%20Index/HelpIndex_Public.sql

8 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
3.3 Nonclustered Index

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Leaf Level

• If there is no space available in the NCI for interspersed INSERTS, the
Index Page must be split.
• This disturbs the PageChain

• The is a Nonclustered Index, with a couple of
additional attributes.

• The NCI conatins the RowId in the Heap; the rows do not move, and so
there is nothing to update in the NCIs (including the PI). This is better
stated as, in order to eliminate updating the NCIs, the rows in the Heap
are designed to be static.

Leaf Level
IndexKey

Page Chain
at Leaf

Level OnlyHeap

Page Chain
at Leaf

Level Only

Nonclustered Index Nonclustered Index

ObjectAllocMap
▶AU1280 ▶A ▶Ext

NObjectAllocMap
▶AU1280 ▶A ▶Ext

N

DataPage/DataRow LockedAllPage Locked

indid = 1 indid = 0indid = 2

Nonclustered
Indices are

Dense

Nonclustered
Indices are

Dense

• If there is no space available in the NCI for interspersed INSERTS,
the Index Page must be split.
• This disturbs the PageChain

• The NCI conatins the RowId in the CI; when the row moves (as the
CI is re-ordered and kept trim), the NCIs need to be updated.

NCI
B Tree

NCI
B Tree

B-Tree Entry

indid = 2

ObjectAllocMap
▶AU764 ▶A ▶Ext

H

B-Tree EntryRow Row

Clust
Index

ObjectAllocMap
▶AU512 ▶A ▶Ext

DB

This chapter discusses the Nonclustered Index, and its characteristics under the different LockSchemes.

IndexKey RowIdRowId

Placement Index

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_2_Clustered_Index.html
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_1_Heap.html

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 9 of 32

Sybase Data Storage & Fragmentation
3.4 Placement Index

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

(None)

DOL tables always have a Heap. They may have a single Placement Index.
It is a Nonclustered Index (there is no structural difference), a separate
DataStructure to the Heap, with two additional criteria:
1. It identifies the initial placement of rows in the Heap
2. Any settings made, such as placement ON segment and FILLFACTOR,

apply to the Heap as well.
As such, its relationship to the Heap is slightly closer than that of other
NCIs, but that does not constitute clustering ala Clustered Index; a term
which existed before its advent;. Note that they are separate by design.
• This initial row placement is not maintained under:

• interspersed INSERTS
• DELETES and
• UPDATES that cause Row Expansion

• The Index & Heap remain two separate DataStructures; two OAMs
• Two Logical Reads on every access (via any NCI, including the PI)

• Key order in each NCI is maintained, but Row order in the Heap cannot
be maintained
• The Heap is Static RowId based.
• Other than to rebuild the Heap, there is no value in a Placement Index

• Range Queries are not possible, since it is not a Clustered Index (there is
no order to the Heap, and it does not have a PageChain).

• Ideal for non-relational Keys (surrogates, monotonic)
DOL tables have an additional third level of Fragmentation, they get
fragmented at this level very quickly, and require regular REORG. The above
illustrates a fresh, unfragmented Heap and Placement Index; section [18]
illustrates a fragmented Heap and Placement Index.

Heap (Always) & Placement Index Fresh

DataPage/DataRow LockedAllPage Locked

The Placement Index is not comparable to a Clustered Index, which is
available only for APL
• It has no clustering (as per the definition of that term since 1984); the B-

Tree is not clustered with the data rows, forming a single physical
DataStructure; it remains a separate DataStructure to the Heap

• There is no such thing as a DOL "clustered" Index
• The use of the term "clustered" Index in relation to DOL tables is therefore

incorrect, confusing, and fraudulent.
• The correct term, as per some, but not all, Sybase documentation, is

Placement Index
• Unfortunately, to address the Placement Index or the Heap, one is

required to use the "clustered" syntax. Talk about forced confusion.

There is no equivalent on the APL side. A rough equivalent would be:
• a Heap (ie. where a Clustered Index has been actively avoided,

thereby crippling it).
• but even then the APL Heap has a PageChain, providing faster
scans

• plus a Nonclustered Index

Leaf Level

Page Chain
at Leaf

Level Only

Heap

indid = 3

ObjectAllocMap
▶AU1280 ▶A ▶Ext

N ObjectAllocMap
▶AU764 ▶A ▶Ext

H

indid = 0

 NCI
B Tree

IndexKey RowId

This chapter discusses the Placement Index, and its characteristics.

B-Tree Entry Data Row

No Page
Chain:
Scans

must use
OAM

method

Deeper Understanding, Less Irrelevant Work
Consider this. Since:

• Given that Range Queries are not supported, there is no value in the Placement of rows in the Heap, or maintaining the order of the rows
• Whatever placement is obtained by DROP/CREATE INDEX, is lost as soon as ordinary DML commences

therefore the placement intended by the Placement Index is actually quite irrelevant, and can be dispensed with. This merely eliminates the confusion,
and the small mountain of false expectations heaped upon it.
The issue that remains, that does matter, is fragmentation, since it hinders Asynch Pre-Fetch and Large I/O efficiency and consumes unused space.
When the Heap becomes fragmented enough to warrant it, de-fragment it by creating and dropping a Placement Index (realising its the fleeting value,
which is to identify some order when rebuilding the Heap). This method is usually much faster than REORG REBUILD, even though the WITH
SORTED_DATA qualifier cannot be used, since the data in the Heap is not in any order.

Placement Index Key
Since Range Queries cannot be supported, and the order cannot be maintained, the index that is chosen for the Placement Index is actually quite
irrelevant. The candidate index that explicitly identifies, or implies, a chronological order is best, since it groups the most frequently updated rows
away from the least frequently updated rows.

18

Nonclustered Index

third level of Fragmentation

Heap is Static RowId based

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

Heap

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_1_Heap.html

10 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
4 Data Model • Catalogue

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Locates
[1]

A Page number that is divisble by 8 is an Extent,
containing a single DataStructure. Contrary to
the manuals, an Extent contains only one
DataStructure

A Page or Extent number that is divisble by 256 is
an AllocationUnit, containing an AllocationPage
and up to 32 Extents.

Server
Database

A formal Relational Data Model is the best way to understand data, and its relations. This chapter presents the entities in the catalogue that pertain to
Data Storage elements, in terms of a formal Data Model (Entity Relation level), rendered in IDEF1X. Specifically, it shows the catalogue in which
information about each Data Storage Unit is stored.

Distribution Logical Physical

Device
sysdevices

Database
sysdatabases

Table
sysobject=U

DataStructure
sysindexes

Partition
syspartitions

Segment
syssegments

DbFragment
sysusages

Allocation
Unit

Extent

Page

May House

Allocation
Page

Object
Allocation

Map

Global
Allocation Map

sysgams

Partition
Control
Page

Devices and Databases are server objects

The GAM is a server level entity, however it is
located in the Database catalogue

This models the normal case: exceptional cases, such as the mandatory logsegment, which may or may not be correctly deployed, are not differentiated.

Consists Of (Logical)

As discussed above, the physical manifestation of a
DataStructure is one or more Partitions.

May Contain

The atomic unit of Storage, and of I/O. Asynch
Pre-Fetch can read an Extent or AllocationUnit in
a single request.

IDEF1X Notation

Identifies [1]

1. Additionally: Has Space Available In.

Exists As

Has Space
Available In

Is Created On
May ContainMay Be

Arranged As

May Be Deployed On
May Contain

May Contain

Comprises

Manifests As (Physical)

DbAllocation
sysusages

Consists Of
The Database Allocation is the collection of
Database Fragments

• The entities in the catalogue are rendered with a
shadow and the catalogue name, the remainder
are in the DataStructures

• Square corners means Independent, round corners
mean dependent

• Solid lines mean an Identifying relation; dashed
lines mean Non-identifying relations

• Read the VerbPhrases to understand the relations
• For a full introduction to IDEF1X Notation, etc,

use the link at the bottom.

The size of Database Fragments is automatically
set, based on the ALTER DATABASE request versus
the space availability and location. The smaller
the Fragment, the more the database is fragmented
at Level I.

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 11 of 32

Sybase Data Storage & Fragmentation
5 Data Model • DataStructure

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

PageChain:
• APL Heap
• Clustered Index

(Leaf & Non-Leaf)
• Nonclustered Index (Leaf only)
• Text/Image Chain.

There are always at least two paths to the data. That a Page belongs to a specific DataStructrure is directly identifiable (grey
relation); but the DataStructure consisting of Pages is not directly identifiable by this means. The PageChain or OAM provides that.

The Text/Image Chain is a
PageChain. Each entry is
one or more Pages,
belonging to a column in
a specific row.

This chapter exposes the five types of DataStructures, starting from the catalogue, in terms of a formal Data Model (ER level).

IDEF1X Notation

1. Additionally: Has Space Available In.

May
Contain

Partition
syspartitions

Partition
Control
Page

Table
sysobjects=U

DataStruct
sysindexes

Allocation
Unit

Extent

Allocation
Page

Object
Allocation

Map

Locates [1]

NCI
B-Tree

NCI
Leaf

Has

May Contain

Identifies [1]

APL
Heap

APL Heap
Row

May Contain

Has

Text/Image
Entry

Text/Image
Chain

Locates
(RowId)

CI
B-Tree

CI Leaf
(Row)

May Contain

Is

Page
Chain

Orders

Page

Is

Has

May Contain

May
Be

May Be

May Contain

DOL
Row

DOL
Heap

Forwarded
DOL Row

Deleted
DOL Row

Has

Has

Has

Has

Has

May Have

Manifests As
(Physical)

Consists Of
(Logical)

No PageChain:
• Nonclustered Index (Non-Leaf)
• DOL Heap.

• The entities in the catalogue are rendered with a
shadow and the catalogue name, the remainder
are in the DataStructures

• Square corners means Independent, round corners
mean dependent

• Solid lines mean an Identifying relation; dashed
lines mean Non-identifying relations

• Read the VerbPhrases to understand the relations
• For a full introduction to IDEF1X Notation, etc,

use the link at the bottom.

1

2

3

5

4

Based on IndexId

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf

12 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
6 Definition

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

This document defines and discusses all aspects of Fragmentation, in substantial detail (albeit condensed) as it occurs in Sybase ASE.
The document is laid out as follows:

• this introduction, containing definitions and approach
• the impact of fragmented DataStructures
• Definition of every Type of Fragmentation, within each of the three Levels
• four sections identifying how Fragmentation can be determined accurately, and without confusion, fully detailed
• a section on evaluation of the various determinants
• an additional section of issues relating to Partitioned DataStructures
• eleven sections discussing the different Types of Fragmentation within each Level, fully illustrated and discussed

In particular, the level of detail provides information so that Fragmentation can be fully understood and therefore prevented, and leads up to why common
methods of correcting Fragmentation do not work. Put another way, the detail identifies why Fragmentation must be addressed using an overall approach,
at all three levels, if substantial performance gains are sought. It is not a point problem, and therefore point solutions do not apply.
Understanding the Data Storage structures that Sybase uses, is a pre-requisite to understanding Fragmentation.

• A table does not exist physically, it exists as a collection of Physical DataStructures: when a query is executed, it is the DataStrucures that belong
to the table that are accessed. In order to administer tables efficiently, the DataStructures and how they are accessed, must be clearly understood.

Level
The three Levels of Fragmentation are quite independent of each other, and can be differentiated easily. It is quite possible for a DataStructure to be
fragmented at one Level and free of Fragmentation at another Level: indeed, each Level requires quite different correction operations, and they
affect only that Level. The highest performance is obtained when all three levels are addressed.

It is normal to de-fragment a
DataStructure at Level II because
it is demanded presently, but to
leave a full de-fragmentation
operation of Level I to a separate
maintenance window, addressing
many DataStructures together,
because it requires reasonable
planning and the scripts require
testing, etc.

Frequency
The frequency of correction operations for each Level, is also different:
• Level III de-fragmentation (REORG REBUILD or DROP/CREATE CI or "CI") is required weekly at a minimum.
• Level II is dependent on

a. whether a good Segment plan has been implemented, and
b. the turnover within the DataStructure.
The frequency required varies from monthly to annually. A good Segment plan and a well designed Clustered
Index may well eliminate the need for de-fragmentation altogether.

• Level I de-fragmentation is required once, if it is done properly. It provides
a. the basis for reduced fragmentation at Level II
b. reduced frequency of Level II de-fragmentation operations, because it renders the correction operations at

Level II more permanent.
What it is Not

Administrators are sometimes confused by the masses of misinformation either available on the internet, or presented by Storage Teams who are
avoiding work, or hardware salesmen who are selling something on the false basis that it will result in less work for the DBA. To address this, it is
important to understand what Fragmentation is not:
• Hardware Striping equals Fragmentation

The SAN (or Logical Volume Manager) and Sybase ASE are completely independent of each other. ASE treats the Logical Volume as a
contiguous series of disk blocks. Whether the LV is striped or not is irrelevant to ASE; Fragmentation; performance; etc. Striping affects only the
speed of the LV within the hardware unit. De-fragmentation operations within ASE reclaims performance within ASE.

• If you use a SAN, you don't need Segments
See above. Total lack of technical ability and logic. My father works 50 hours a week, therefore your father does not need to work.

• Partitions equals Fragmentation
When the Partitions of a table (Physical DataStructure) are placed on several Devices or Segments, for performance purposes, by design, it is
distribution not fragmentation, and the result is substantially different to the fragmentation that occurs when there is no design.

• Data Distribution equals Fragmentation
Substantial performance can be gained in Relational tables when the Key (usually composite Keys) is used to distribute the data 1, and therefore
decrease contention. That is again, by design, and space must be reserved for interspersed INSERTS. Such reserved space is not the same as
unused or waste space, which cannot be used for interspersed INSERTS.

What it Is
Level I

Database Fragmentation: the unplanned or unconscious occupation of space, and the disturbed contiguity, of DataStructures across the Database.
Level II

DataStructure Fragmentation: the unplanned or unconscious occupation of space, and the disturbed contiguity, within the DataStructures.
Level III

Page Fragmentation: the unplanned or unconscious occupation of space, and the disturbed contiguity, within the DataStructures, in systems that
have been implemented quickly and without OLTP Standards or Relational technology.

1. That is not possible in record filing systems, where surrogate keys (single-column; monotontic) are used across the board.

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII Determ

Data Storage
 Physical DataStructures:

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 13 of 32

Sybase Data Storage & Fragmentation
6.1 Impact

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

Asynch Pre-Fetch
is the mechanism, the set of methods that enables Sybase ASE to read
large amounts of data, in anticipation of the query requirement.
• Asynch Pre-Fetch reads:

Min 8 Pages (1 Extent)
(Min for Covered NCI Scan is 2 Rows)

Max 256 Pages (1 AllocationUnit or 32 Extents)
(the first Page/Extent uses 2K I/O, due to it being an AllocPage)

• Asynch Pre-Fetch is requested for Table Scans, Range Scans, Covered
NCI Scans, DBCC, and Recovery

• It has a self-modulating Look-Ahead Set which:
• prevents it from saturating the I/O subsystem, and
• prevents it from reading large numbers of Extents or Pages that will

not be used.
The modulation is based on the extent of success/failure of previous
APF attempts on the DataStructure.

• Due to ASEs brilliant architecture, Asynch Pre-Fetch operates
independent of the Caches and PoolSizes, and concerns itself with
Buffers; and subsequently, Pages used.

Large I/O
refers to the resources used by Asynch Pre-Fetch. When large Buffers
are requested, the (a) specifc Cache and (b) the available PoolSizes
come into play. The integrity of resident Buffers may cause denials:
Pages or Extents within the requested Buffer may already exist in a
smaller PoolSize; the PoolSize requested may not be present; etc.
Therefore Large I/O statistics relate to Caches and PoolSizes (not
Buffers).

The impact of fragmentation is usually a subjective issue: people are used to a certain level of response from their queries, when the database contains a
somewhat higher population than it did during the initial testing, the response slows down. It is an awareness that is quite real, but unscientific.

• the loss of speed is certainly the result of naïve server installation and configuration, and a lack of planning and configuration at the Device and
Segment levels

• that loss of speed is not necessary: the server and its resources can be configured, such that response does not slow down with population, even
with very large tables 2

• that subjectivity is relevant only in the absence of science and knowledge; chapter [7] details the accurate determination of fragmentation, such that
science and knowledge can de used instead of subjectivity

• the initial value of that subjective sense of speed is actually quite low (since the query did not enjoy the benefit of proper configuration, and thus
the use of Asynch Pre-Fetch and Large I/O), and therefore the users are in reality comparing 'slow' with 'very slow' on the scale of possible speed;
they have never enjoyed 'fast' and they do not know what they are missing.

Level I
Correcting Level I Fragmentation returns great speed to the DataStructures, due to enabling Asynch Pre-Fetch and Large I/O to their maximum
extents. It allows Sybase to operate at the 'fast' end of the possible speed spectrum. Further, it contains and therefore reduces the extent of Level II
Fragmentation 3.

Level II
Most DBAs are aware of some of the aspects of Level II Fragmentation, and how to correct it. There are some traps for young players, as detailed in
chapter [9], ignorance of which will cause de-fragmentation operations to be very transient, to have no persistence. However, without an awareness of
Level I, the baseline speed is 'slow' and the frequency of de-fragmentation operations is increased.

Level III
This is mainly the consequence of storing unnormalised spreadsheets in a database container, as opposed to storing Normalised Relational tables. One
has to live with the consequences of such actions, and deal with the myriad problems, such as fragmentation of a new order; frequent and offline
maintenance of DataStructures; reduced concurrency (increased contention); increased number of locks; etc.

Performance & Tuning
• APF is generally automatic (one need not do anything to invoke it)
• Large I/O is possible if a large PoolSize is configured for the Cache
• Resources for both APF and Large I/O are fully configurable, monitored in detail, and

can be tuned at several levels.
• Sysmon reports statistics for both the APF mechanism and the Large I/O resources.
• the low usage of these facilities is always due to fragmentation at Level I or Level II

or both. Correcting that fragmentation returns great speed to the DataStructures.

This document is written for the qualified Sybase Database Administrator, and the subject is Fragmentation. As such, it does not detail how
the I/O subsystem; disk resources; caches and their configuration; etc, operate. It is expected the the reader understands all that, and therefore appreciates
the relevance of maintaining DataStructures in an un-fragmented state. However, there are basic features within Sybase ASE, that are commonly
unappreciated and therefore unused. It is a shame that in many sites, Sybase operates at a mere fraction of the speed that it is capable of.
Two such features that are fundamental to ASE delivering great speed when accessing the DataStructures, are described here.

2. Contrary to most articles on the web, Sybase is quite capable of high speed on very large tables. Archiving history data onto a separate database; the
consequent requirement to modify code (to look in two places for one thing); the maintenace of an archive database; the loss of DRI, are all quite
unnecessary.

3. Software Gems provides a High Performance Sybase Configuration, that ensures the server is operating as the highest levels of performance. We also
provide a complete Device & Segment [re-]configuration, such that Level I issues are eliminated. Both on a fixed price, guaranteed result basis.

DataStructUnitIntro III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII DetermDefn

7

9

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

14 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
6.2 Fragmentation Type

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

It is convenient when the Type identifies the exact location of the Fragmentation within the Database or DataStructure; other
forms of identifying the Type are confusing. In order to fully understand the three Levels of Fragmentation, and types of Fragmentation within each
Level, let us look at the best and worst scenarios in each Level and Type. Your DataStructures will be either one or the other, there is no 'in-between';
however, after correction operations using an overall plan have commenced, the DataStructures will move into that 'in-between' zone.

APL

APL DOL

APL DOL

Level Location/Type Condition CorrectionApplies Result

• Separate the tables
within a transaction

• Separate DataStructs in a
table from each other

• Rebuild DataStructs in a
fresh location

Best
• AllocUnits of a DataSructure spread across

the smallest range
• Extents of a DataSructure spread across the

fewest AllocUnits [10.3]
• Each AllocUnit contains the fewest

DataStructures

AllocationUnit
• AllocUnits

across the Db
• Extents within

AllocUnits

I APL DOL

• Loss of APF
• LIO Structures not used
• More I/Os required to read

the DataStucture

• Highest level of APF:
AllocUnits; Extents as
required

• LIO structures heavily used
• Fewest I/Os required to

read the DataStucture

III Best
No Forwards & Deletes

Page (Heap)

REORG REBUILD or
DROP/CREATE "CI"

DOL

Worst
High percentage of Forwards & Deletes [17]

4. The DOL Heap (containing the data rows), has no PageChain; all scans must use the OAM method
5. The same Result identified at Level I, modulated to the scope identified by Location/Type (the row).
6. Duplicate rows (Keys) are illegal in Relational Databases.
7. It is a good practice to plan and allocate extra space it the Pages and Extents of the DataStructure that contains the data rows, to allow for interspersed
INSERTs; such planned space is not considered unused. Unused Space is specifically the space consumed that is unplanned or unconscious.

PageChainII Best
Contiguous PageChain [12.1]

APL 4

Worst
Disturbed PageChain, spread across Extents
& AllocUnits [12.2]

OverflowPage
• Duplicate

Rows

Unused Space
Page 7

Best
No Non-unique CIs

Unused Space
Extent 7

Best
No Unused Pages per Extent

DROP/CREATE CI or "CI"Worst
High percentage of Unused Pages per Extent
[14]

• Level I modulated 5
• No interrupts during scans

Prevention of insanity

• Level I modulated 5
• More interrupts during

scans

• Level I modulated 5
• Highest level of APF &

LIO
• Level I modulated 5
• APF & LIO scaled back

Best
No Unused space per Page

DROP/CREATE CI or "CI"Worst
High percentage of Unused space per Page
[15]

• Level I modulated 5
• Fewest I/Os required

• Level I modulated 5
• More I/Os required

• Level I modulated 5
• Fewest I/Os required

• Level I modulated 5
• Additional I/O for Forwards

& Deletes
• Creates Unused Space/Page

Worst
• AllocUnits of a DataSructure spread across

the largest range.
• Extents of a DataSructure spread across the

most AllocUnits; on the most Devices; across
the database [8.3].

• Each AllocUnit contains the most
DataStructures

Worst
High percentage of duplicated CI 'keys' [11]

Implement an Unique CI 6Additional I/O for duplicated
'keys'

DOLOverflowPage
• Forwards

Best
No Forwards

Substantially faster queries

Worst
High percentage of Forwards [11, 17]

Fxed length rows or
REORG REBUILD or
DROP/CREATE "CI"

Additional I/O for Forwarded
rows

10.3

8.3

12.1

12.2

13

13 17

14

15

17

DataStructUnitIntro Defn III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII Determ

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 15 of 32

Sybase Data Storage & Fragmentation
7 Determination

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

This chapter explains how Fragmentation at each Level and Type (explained in the previous chapter), for each type of DataStructure
can be determined accurately, and evaluated. The next three sections provide information specific to each of the three Levels of Fragmentation; the
fourth section identifies issues relating to Partitions.

This section is for Customers only

7.1 Determination I
There are no Sybase facilities for identifying Level I Fragmentation, it requires proprietary code, such as our HelpSpace or PhysicalSpace utility, the
report of which is shown here.

DataStructUnitIntro Defn III PageII UnusedII PageChainI SegmentI AllocUnitIII DetermII Determ

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

16 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
7.2 Determination II Space

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Table DataStructure

Table Lck Row Fwd Del Struct IndexName Idx_KB Unused Used_% Data_KB Unused Used_% LGIO SPUT DPCR IPCR DRCR

TestBase_APL APL 2,000,010 Clst UC_SecurityId 508 96 81.1 89,020 124 99.86 99.96 93.74 99.99

 NC1 U__Name 75,720 38 99.95 98.92 99.64 81.85

TestBase_APL_Heap APL 80,000 Heap 3,660 100 97.27 99.62 93.63 99.87

 NC2 U__Name 3,056 28 99.08 99.08 99.69 81.68

TestBase_APL_Loc APL 2,000,000 Clst C__SecurityId 512 100 80.47 88,968 78 99.91 99.99 93.75 100.00

 NC1 U__SecurityId 22,048 22 99.9 99.69 99.90 100.00

TestBase_DPL DPL 2,105,177 0 309 Heap 105,768 3,056 97.11 100.00 94.19

 NC1 U__SecurityId 51,672 230 99.55 26.02 5.25 90.63

 NC2 UP_Name 133,868 40 99.97 30.74 24.91 92.45

TestBase_DRL DRL 100,000 0 0 Heap 4,896 16 99.67 100.00 94.17

 NC1 UP_SecurityId 1,326 16 98.79 100.00 100.00 100.00

 NC2 U__Name 3,984 30 99.25 99.65 99.88 0.05

First, we will examine the basic space metrics related to Level II Fragmentation of the Logical DataStructures, summarising the
underlying Physical DataStructures (Partitions) to the logical level. For non-patitioned DataStructures, this is all that is required. A simple query from
sysindexes, which identifies each Logical DataStructure, is required 1 2.

1. For DOL tables, on the physical plane, a Heap DataStructure always exists. Additionally, a separate Placement Index (falsely named "clustered")
DataStructure may exist. Such DataStructures are quite different to the single Clustered Index dataStructure. This is reflected in the catalogue, and is
easily confirmed in any report, such as the example.

2. The information in the example reports, and much more, is provided in our HelpIndex/HelpPartition utilities.
3. The Clustered Index DataStructure has both B-Tree and Data components: the Pages reserved and the Pages used can be obtained for the B-Tree

portion and the Data portion of the Clustered Index, separately.

Statistic ReturnsRequested For
(DataStructure)

Unused Space/Index Unused pages in the B-Tree portion of the CI
Unused pages in the NCI

Clustered Index (B-Tree) 3
Nonclustered Index

Unused Space/Data Unused pages in the Heap
Unused pages in the Data portion of the CI

Heap
Clustered Index (Data) 3

1 2

1

2

• The RESERVED_PAGES() function returns the number of Pages reserved for the DataStructure. If the partionid is not supplied, all Partitions in
the DataStructure are summarised. Multiplying this value by @@PAGESIZE returns bytes, which can then be divided into kilobytes or megabytes.

• Space for each DataStructure is allocated on an Extent basis (eight Pages); the Extent cannot be used by other DataStructures. Thus it is reserved.
• The value returned is of course, whole Pages.
• The DATA_PAGES() function returns the number of Pages in the DataStructure that contain data. If the partionid is not supplied, all Partitions in

the DataStructure are summarised.
• Subtracting DATA_PAGES() from RESERVED_PAGES() yields unused Pages.
• Dividing them yields the percentage used.

DataStructUnitIntro Defn III PageII UnusedII PageChainI SegmentI AllocUnitIII Determ

Placement Index

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 17 of 32

Sybase Data Storage & Fragmentation
7.3 Determination II DerivedStat

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

Table DataStructure

Table Lck Row Fwd Del Struct IndexName Idx_KB Unused Used_% Data_KB Unused Used_% LGIO SPUT DPCR IPCR DRCR

TestBase_APL APL 2,000,010 Clst UC_SecurityId 508 96 81.1 89,020 124 99.86 99.96 93.74 99.99

 NC1 U__Name 75,720 38 99.95 98.92 99.64 81.85

TestBase_APL_Heap APL 80,000 Heap 3,660 100 97.27 99.62 93.63 99.87

 NC2 U__Name 3,056 28 99.08 99.08 99.69 81.68

TestBase_APL_Loc APL 2,000,000 Clst C__SecurityId 512 100 80.47 88,968 78 99.91 99.99 93.75 100.00

 NC1 U__SecurityId 22,048 22 99.9 99.69 99.90 100.00

TestBase_DPL DPL 2,105,177 0 309 Heap 105,768 3,056 97.11 100.00 94.19

 NC1 U__SecurityId 51,672 230 99.55 26.02 5.25 90.63

 NC2 UP_Name 133,868 40 99.97 30.74 24.91 92.45

TestBase_DRL DRL 100,000 0 0 Heap 4,896 16 99.67 100.00 94.17

 NC1 UP_SecurityId 1,326 16 98.79 100.00 100.00 100.00

 NC2 U__Name 3,984 30 99.25 99.65 99.88 0.05

4. Display of meaningless figures causes great confusion, and invites comparison with meaningful figures, eg. DPCR for a DOL Heap (fixed 100%,
meaningless) cannot be related to or be compared with DPCR for an APL Heap (meaningful) which can be addressed, in order to achieve close to
100%. Administrative time is wasted in correlating such figures and trying to make sense of them; decisions that may be made on the basis of such
confusion are consequently irrelevant and meaningless. It is therefore better to avoid displaying meaningless figures, and to focus on the meaningful
figures alone.

5. Data Space Utilisation Data is contained in either the Heap or the Clustered Index only, therefore SPUT applies to them alone, the fiigure for the
NCI (always 0%) is meaningless.

6. Data Page Cluster Ratio The DOL Heap does not have a PageChain; data page access is via the OAM only; the figure (always 100%) is
meaningless (space may well be poorly utilised); use LGIO or SPUT instead. It is not comparable with the DPCR of the APL Heap or CI.

7. DPCR is relevant for fetching data pages, which reside in the Heap or the Clustered Index only. It does not apply to the Nonclustered Index, since it is
used to access data rows; data pages are never fetched via that structure. The Nonclustered Index (including the Placement Index) does not support
Range Queries, only the Clustered Index does, and there it does fetch pages.

8. Index Page Cluster Ratio is relevant for fetching index pages; it applies to the Nonclustered Index. There are no index pages in the Heap; the figure
(always 0%) is meaningless; refer to IPCR of the relevant NCI.

9. Index pages in the Clustered Index are not provided separately; the figure (always 0%) is meaningless; use DPCR instead.
10. Data Row Cluster Ratio is relevant for fetching data rows; it applies to the Nonclustered Index, since it is used to fetch data rows. It does not apply

to the Heap since access to it is for pages, via the PageChain (APL) or the OAM (DOL). The figure (always 100%) is meaningless: for APL, use
DPCR instead; otherwise, refer to DRCR of the relevant Nonclustered Index.

11. DRCR does not apply to the Clustered Index. Since the data rows in the Clustered Index are maintained in index order, by definition the DRCR is
100%. The figure is meaningless: for APL, use DPCR instead; for DOL, there is no Clustered Index, refer to DRCR of the relevant Nonclustered Index.

12. The function does not provide statistics for the Text/Image chain.

Statistic
ReturnsRequested For

(DataStructure) Meaningless & Confusing 4

DPCR Data Page Cluster Ratio

SPUT Data Space Utilisation

IPCR Index Page Cluster Ratio

DRCR Data Row Cluster Ratio

Density of data per page in the Heap, via PageChain

Density of data per page in CI order

Density of data rows per data page
Density of data rows per data page

Density of index pages in NCI order

Density of data rows in NCI order

Heap
Clustered Index
Nonclustered Index 5

Heap/APL
Heap/DOL 6
Clustered Index
Nonclustered Index 7

Heap 8

Clustered Index 9
Nonclustered Index

Heap 10

Clustered Index 11

Nonclustered Index

LGIO Large I/O Efficiency Page/Extent/AllocationUnit contiguity of Heap
Page/Extent/AllocationUnit contiguity of CI
Page/Extent/AllocationUnit contiguity of NCI

Heap
Clustered Index
Nonclustered Index

Does not apply

Does not apply

Does not apply

Does not apply
Does not apply

Does not apply
Does not apply

3 4 5 6 7

3

4

5

6

7

Second, we will examine the Derived Statistics provided by Sybase that relate to Level II Fragmentation of the Logical DataStructures,
again summarising the underlying Physical DataStructures (Partitions) to the logical level. A simple query from sysindexes, which identifies each
Logical DataStructure, is required 1 2.

• The DERIVED_STAT() function returns five statistics for four of the five types of DataStructure 12. Again, if the partitionid is not supplied, all
Partitions in the DataStructure are summarised.

• Unfortunately, DERIVED_STAT() does not operate the way RESERVED_PAGES() and DATA_PAGES() operate: The Clustered Index is treated as a
whole unit, values for the B-Tree and the data cannot be obtained separately.

• Further, instead of returning Null for requests that are not applicable, it returns interesting values or fixed values (0% or 100%), which lead to
confusion 4. The cells for meaningless figures are empty in the example report.

• Note that the function (all five statistics) return fairly exact information, at the row or intra-page level, whereas RESERVED_PAGES() and
DATA_PAGES() returns whole Pages.

DataStructUnitIntro Defn II Determ III PageII UnusedII PageChainI SegmentI AllocUnitIII Determ

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

18 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
7.4 Determination III

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Table DataStructure

Table Lck Row Fwd Del Struct IndexName Idx_KB Unused Used_% Data_KB Unused Used_% LGIO SPUT DPCR IPCR DRCR

TestBase_APL APL 2,000,010 Clst UC_SecurityId 508 96 81.1 89,020 124 99.86 99.96 93.74 99.99

 NC1 U__Name 75,720 38 99.95 98.92 99.64 81.85

TestBase_APL_Heap APL 80,000 Heap 3,660 100 97.27 99.62 93.63 99.87

 NC2 U__Name 3,056 28 99.08 99.08 99.69 81.68

TestBase_APL_Loc APL 2,000,000 Clst C__SecurityId 512 100 80.47 88,968 78 99.91 99.99 93.75 100.00

 NC1 U__SecurityId 22,048 22 99.9 99.69 99.90 100.00

TestBase_DPL DPL 2,105,177 0 309 Heap 105,768 3,056 97.11 100.00 94.19

 NC1 U__SecurityId 51,672 230 99.55 26.02 5.25 90.63

 NC2 UP_Name 133,868 40 99.97 30.74 24.91 92.45

TestBase_DRL DRL 100,000 0 0 Heap 4,896 16 99.67 100.00 94.17

 NC1 UP_SecurityId 1,326 16 98.79 100.00 100.00 100.00

 NC2 U__Name 3,984 30 99.25 99.65 99.88 0.05

Statistic ReturnsRequested For
(DataStructure)

Forward 13 Variable length rows that have been transferred to another locationDOL Heap

Delete 14 Rows that are marked for deletionDOL Heap

13. For each Forwarded row, two row 'slots' are consumed: the first for the original location, the address of which is fixed, and cannot be moved; and the
second for the forwarded location, which contains the expanded data row.

14. Deletes are not physically removed from DOL Heaps until REORG is executed.

8

98

9

Third, we will examine the Forwarded and Deleted row counts that relate to Level III Fragmentation of the Logical DataStructures,
which occur in DPL/DRL lockschemes only. This applies to the Heap, and is in addition to, not instead of, LGIO and SPUT (which are explained in
[7.3]). Again summarising the underlying Physical DataStructures (Partitions) to the logical level. A simple query from sysindexes, which identifies
each Logical DataStructure, and systabstats.forwrowcnt & delrowcnt is required 1 2.

• systabstats contains one row for each Physical DataStructure, which means the columns must be summed to produce a Logical level report.
• Execute sp_flushstats before querying the table.
• Forwards and Deletes apply to the DOL Heap only.
• DOL tables always have a Heap, wherein the row resides. The Heap is Static RowId based. The space allocated for Forwarded rows (which

consume the space of two rows) and Deleted rows (which consumes the space of one row), cannot be re-used for interspersed INSERTS.
• Since Forwards and Deletes do not apply to APL tables (row expansion is performed in-place and deletion is immediate), the relevant cells are

empty in the example report.
• Space can be reclaimed via REORG or DROP/CREATE "CLUSTERED" INDEX (there is no Clustered index for DOL tables, but the syntax is

required).

a. The three sets of metrics (Unused Space; Derived Statistics; Forwards & Deletes) regarding Fragmentation of a DataStructure must be taken
together; any single metric should not be evaluated alone.

b. Similarly, all the DataStructures that belong to a table should be evaluated together. This should be done in the context of the actual usage: certain
queries require single-row data (via an index); covered queries require access across an entire index; yet others would require table scans.
Knowledge of how the data is accessed, and the DataStructures that are used to support that access, is essential to relevant administration.

c. In addition, the actual speed of the DataStructures belonging to the relevant tables must be monitored: timing records (for either a controlled test or
an actual production sample at certain times of day, ensuring the same configuration and cache settings) must be kept, so that they can be compared
before and after de-fragmentation operations.
• The value of any particular de-fragmentation operation must be confirmed: there is no point in performing operations that do no provide a benefit.
• The length of time between de-fragmentation operations, when speed is regained, and the point where the DataStructure has deteriorated enough

to warrant the operation being repeated, should be recorded. If Level I Fragmentation is addressed, the frequency of such operations is
substantially reduced.

d. Likewise, sysmon reports covering the period of the day should be maintained, or MDA data should be captured at relevant intervals. This is very
important because it will allow you to tune the structures at an overall level (rather than on a DataStructure basis).
• The most important indicator of Fragmentation is that the Asynchronous Pre-Fetch capability that is built into the server, and the Large I/O

resources that have been configured, are not used. Denying these facilities cripples the speed of Sybase.

7.5 Evaluation

43

7.3

DataStructUnitIntro Defn II Determ III PageII UnusedII PageChainI SegmentI AllocUnit

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 19 of 32

Sybase Data Storage & Fragmentation
7.6 Determination Partition

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

The above reports view the Logical DataStructures, and that is quite adequate for initial inspection, before further inspection is
warranted. It is the end point for non-partitioned DataStructures. For Partitioned DataStructures 15, the Physical DataStructure must be inspected. The
determination of Level II & III Fragmentation is only slightly more complex, it requires a simple query from syspartitions, which identifies Physical
DataStructures, and systabstats.forwrowcnt & delrowcnt 1 2.

• syspartitions and systabstats each contains one row for each Physical DataStructure (Partition).
• Execute sp_flushstats before querying the tables.
• Only the DataStructure that holds data rows, either the Heap or the Clustered Index, is Partitioned; the Nonclustered Index and the Text/Image

Chain are not Partitioned.

Table DataStructure Partition

Table Lck Struct IndexName Partition Row Fwd Del Idx_KB Unused Used_% Data_KB Unused Used_% LGIO SPUT DPCR IPCR DRCR

TestBase_APL APL Clst UC_SecurityId [1] 496,821 128 24 81.25 22,126 42 99.81 99.94 93.74 99.98

 [2] 496,195 126 24 80.95 22,080 26 99.88 100.00 93.75 100.00

 [3] 496,091 128 26 79.69 22,080 30 99.86 100.00 93.74 100.00

 [4] 510,903 126 22 82.54 22,734 26 99.89 100.00 93.75 100.00

 NC 1 U__Name 75,720 38 99.95 98.92 99.64 81.85

TestBase_APL_Heap APL Heap [1] 20,891 960 30 96.88 100.00 93.60 100.00

 [2] 20,245 928 28 96.98 100.00 93.73 100.00

 [3] 20,007 910 20 97.80 100.00 93.67 100.00

 [4] 18,857 862 22 97.45 100.00 93.54 100.00

 NC 2 U__Name 3,056 28 99.08 99.08 99.69 81.68

TestBase_APL_Loc APL Clst C__SecurityId data_1 494,325 128 26 79.69 21,998 28 99.87 100.00 93.75 100.00

 data_2 493,200 128 26 79.69 21,934 14 99.94 100.00 93.75 100.00

 data_3 493,920 128 26 79.69 21,966 14 99.94 100.00 93.75 100.00

 data_4 518,555 128 22 82.81 23,070 22 99.90 100.00 93.75 100.00

 NC 1 U__SecurityId 22,048 22 99.90 99.69 99.90 100.00

TestBase_DPL DPL Heap [1] 571,980 0 94 28,748 840 97.08 100.00 94.18

 [2] 494,252 0 49 24,998 884 96.46 100.00 94.19

 [3] 508,744 0 90 25,540 718 97.19 100.00 94.19

 [4] 530,201 0 76 26,482 614 97.68 100.00 94.19

 NC 1 U__SecurityId 51,672 230 99.55 26.02 5.25 90.63

 NC 2 UP_Name 133,868 40 99.97 30.74 24.91 92.45

1 2 3 4 5 6 798

15. Partitioning (if implemented correctly at all resource levels) provides massively increased performance, improved concurrency (if OLTP Standards
are implemented), and substantially reduces maintenance and de-fragmentation windows, because Partitions can be administered individually, or a
needs basis.

Unused Space/Index Unused pages in the B-Tree portion of the CIClustered Index (B-Tree)

Unused Space/Data Unused pages in the Heap
Unused pages in the Data portion of the CI

Heap
Clustered Index (Data)

Statistic
ReturnsRequested For

(Partition) Meaningless & Confusing 4

DPCR Data Page Cluster Ratio

SPUT Data Space Utilisation

IPCR Index Page Cluster Ratio

DRCR Data Row Cluster Ratio

Density of data per page in the Heap, via PageChain

Density of data per page in CI order

Density of data rows per data page
Density of data rows per data page

Heap
Clustered Index

Heap/APL
Heap/DOL 6

Clustered Index

Heap 8

Clustered Index 9

Heap 10

Clustered Index 11

LGIO Large I/O Efficiency Page/Extent/AllocationUnit contiguity of Heap
Page/Extent/AllocationUnit contiguity of CI

Heap
Clustered Index

Does not apply

Does not apply
Does not apply

Does not apply
Does not apply

Forward 13 Variable length rows that have been transferred to another locationDOL Heap

Delete 14 Rows that are marked for deletionDOL Heap

1

2

3

4

5

6

7

8

9

• The columns have been re-arranged to clarify the DataStructure hierarchy and to make sense. The various row counts, space usage, and derived
statistics are shown at the Partition (Physical) level, where it is actually located.

• The Heap and the Text/Image Chain are not named. Where the Partition is not explicitly named, an ordinal number is used to identify it (rather than the
default Partition name, which is made up from the long and unusable partitionid).

• This example report lists Partitioned tables. It shows all DataStructures relating to each Partitioned table, in one place, in order to avoid having to
examine two reports.

• TestBase_DRL is not Partitioned, thus it is absent from this report.

DataStructUnitIntro Defn II Determ III Determ III PageII UnusedII PageChainI SegmentI AllocUnit

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

20 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
8 I Allocation Unit

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

32 Extents, 256 Pages, 512KBAllocUnit

Extents 2 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3112 28A 31

8.3 DataStructure Perspective

This shows the result of loading a single DataStructure into an empty AllocationUnit, and creating the Clustered Index, with SORTED_DATA if the CI was
just droppped. The Extents are contiguous within the AllocationUnit; Asynch Pre-Fetch and Large I/O are fully operational. Even if the order was not
sequential, and the PageChain was not linear, these facilities remain fully operational; the Look-Ahead set is not scaled down.

Where Segments are not understood and used, as in most sites, the reality is somewhat different. Since the Extents of up to 32 DataStructures (physical
objects) can be located in an AllocationUnit, and all tables were loaded by concurrent INSERTS, the AllocationUnits each end up with Extents belonging
to 32 different DataStructures. The Extents are fragmented within the AllocationUnits, and the AllocationUnits are fragmented across all Devices.
• Where 128 DataStructures are loaded, they are all fragmented across four AllocationUnits, etc.
• The INSERTS to all tables contend for the few currently active AllocationUnits, creating an AllocationUnit Hotspot.
• Further, the INSERTS to each table contend with its own Nonclustered indices: if a nominal table has 3 Nonclustered indices, that would be 32 tables

with their NCIs, resulting in 128 DataStructures, across four AllocationUnits.

ASE correctly identifies that Asynch Pre-Fetch & Large I/O (multiple Extents, up to an entire AllocationUnit, at Level I) is not worth attempting. In such
circumstances, drop/create Clustered Index, while de-fragmenting the DataStructure within itself (Levels II & III), does nothing to improve the
established fragmentation at the AllocationUnit level (I): once it is set, it is set for life (refer next page), until Segments are used along with fresh
Allocation Units.

This shows the Extents of a typical table, comprising two DataStructures:
• a single Clustered Index (containing data and index Pages) or a DOL Heap (data Pages only) in green,
• and one Nonclustered Index (index Pages only) in blue. (The DOL Placement Index is an ordinary Nonclustered Index, a separate DataStructure, some

distance away from its data Heap, although on the same Segment.)
• The Pages within each DataStructure are some distance apart from each other. Here they cross Allocation Units.
• For DataStructures that have a PageChain, it is disturbed (the numbers show the sequence); it traverses AllocationUnits.
The first page of each AllocationUnit is the AllocationPage. The first page of a DataStructure contains its ObjectAllocationMap, that perspective is on
the right. It is a list of all AllocationUnits that contain the DataStructure. The AllocationUnit is then interrogated via its AllocationPage to find the
Extents that belong to the DataStructure.

8.1 Fresh

A

8.2 Fragmented
Extents

An Object (physical term, as in ObjectAllocationMap; and
which is unfortunately different to OBJECT_ID(), etc.,
which is a logical term) is a DataStructure, one of:
• Clustered Index (APL Only)
• Heap (DOL: always, APL: only when there is no CI)

• the DOL Heap and APL Heap are very different
• Nonclustered Index (DOL Placement Index is NCI)
• Text/Image Chain

• The web is full of mis-information, and shallow information.
• Single-vendor sites are censored, and exclude robust discussion of technical

issues related to their offerings; they have their commercial agenda.
• There is no substitute for actual experience, or for diligently verifying that you

have actually accomplished what you set out to.
• Fragmentation at every level shown here, is easy to identify.

• The success, and ease of correction, depends on your skills and understanding
of this information: this is published free to assist you in that regard.

This part of the document identifies Level I Fragmentation: AllocationUnits within the Database (Allocations) and Extents within
AllocationUnits. It is provided in three sections:
• AllocationUnit basics
• Why Drop/Create does not return Asynch Pre-Fetch and Large I/O, and
• Prevention of Level I fragmentation, the use of Segments.

ObjectAllocMap
▶AU0 ▶A ▶Extent
▶AU256 ▶A ▶Extent
▶AU1024 ▶A ▶Extent
▶AU512 ▶A ▶Extent
▶AU1280 ▶A ▶Extent
▶AU768 ▶A ▶Extent

CA

A

A

A

A

AU0

AU256

AU512

AU768

AU1024

AU1280 A

1

2

4

6

5

N

ObjectAllocMap
▶AU512 ▶A ▶Extent

N6

DataStructUnitIntro Defn II Determ III Determ III PageII UnusedII PageChainI Segment

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/1_Unit.html
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/1_Unit.html
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/1_Unit.html
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_3_NonClustered_Index.html

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 21 of 32

Sybase Data Storage & Fragmentation
9 I Drop-Create

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

The distilled requirement, is simply to create the Clustered Index without the SORTED_DATA option; this re-writes the data Pages to a new location.
Which makes the bcp-out/bcp-in unnecessary. However, the original DataStructure space, which is released at the end of the process, will be used for
whichever Clustered Index is created next, as shown in section [].
bcp-out/bcp-in is effective only when the entire database, or at least a large groups of tables, are de-fragmented together. Otherwise, aa new location
can be specified by creating a new Device and identifying a new Segment on it.

9.1 Common De-Fragmentation Issue

9.2 BCP-Out, Drop

9.3 BCP-In, Create Clustered Index Sorted Data

When the data is bcped-in, it is placed in the available Extents, most likely the recently evacuated ones (assuming unload/load is performed when the
database in not in use). Certainly, the DataStructure is de-fragmented within its own Extents and Pages (Levels II & III). However, if proceeding with
one or a few DataStructures at at time; the Extents de-allocated will be re-used; they were fragmented at Level I before; and they remain so. Asynch Pre-
Fetch & Large I/O (multiple Extents, up to an entire AllocationUnit, at Level I) is still not possible. Although advised by many Sybase identities, this is a
common mistake; at any rate, its effect is temporary, and it needs to be repeated.
If SORTED_DATA is used, which does not re-write the data Pages, the Extents remain in their location.

9.4 Drop, Create Clustered Index

This chapter discusses some of the issues relevant to typical de-fragmentation exercises, and the limitations of DROP/CREATE CLUSTERED INDEX.
Many DBAs de-fragment their DataStructures by performing the full complement of the three steps identified here, and puzzled: while the table is
significantly faster, Asynch Pre-Fetch and Large I/O are not reurned. The DataStructure concerned is either a Clustered Index or a DOL Heap, the before
image is illustrated in [].

A
A
A
A
A
A

AU0
AU256
AU512
AU768

AU1024
AU1280

The data has been bcped-out, and the table has been truncated, or the table is dropped and recreated. As long as Segments are not used to place the
table on different Devices, or separate groups of tables, this sequence applies.

A
A
A
A
A
A

1 2
3

4
5

6

AU0
AU256
AU512
AU768

AU1024
AU1280

C ObjectAllocMap
▶AU0 ▶A ▶Extent
▶AU256 ▶A ▶Extent
▶AU512 ▶A ▶Extent
▶AU768 ▶A ▶Extent
▶AU1024 ▶A ▶Extent
▶AU1280 ▶A ▶Extent

Drop-Create and Sorted_Data
• DROP/CREATE CLUSTERED INDEX in its unqualified form rewrites all data Pages, and the PageChain

(if the structure has one); the operation requires 125% of the space used, at the new location.
• When it is qualified WITH SORTED_DATA, the data Pages are not re-written, which means

fragmentation is not corrected. It is extremely fast, especially in 15.0
• To correct fragmentation without losing the speed, use WITH SORTED_DATA, along with FILLFACTOR

and/or RESERVEPAGEGAP, which forces the data Pages to be rewritten.
DPL/DRL Lockscheme
• The WITH SORTED_DATA qualifier cannot be used with DOL tables, because the order of the data in the

Heap is not maintained (there is no Clustered Index).
• The exception is that fleeting moment immediately following a full REORG or DROP/CREATE
"CLUSTERED" INDEX (using the syntax demanded to address the Placement Index), in which case
the rebuild is not required.

A
A
A
A
A
A

ObjectAllocMap
▶AU5120 ▶A ▶Extent

▶Extent
▶Extent
▶Extent
▶Extent
▶Extent

C

1 2 3 4 5 6A

AU0
AU256
AU512
AU768

AU1024
AU1280

AU5120

8.3

9.6

I AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII UnusedII PageChainI Segment

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

22 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
9 I Drop-Create

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

9.6 Create Clustered Index/Next Clustered Index
A
A
A
A
A
A

A

1
2

3
4

5
6

AU0
AU256
AU512
AU768

AU1024
AU1280

AU5120

C ObjectAllocMap
▶AU0 ▶A ▶Extent
▶AU256 ▶A ▶Extent
▶AU512 ▶A ▶Extent
▶AU768 ▶A ▶Extent
▶AU1024 ▶A ▶Extent
▶AU1280 ▶A ▶Extent

The next Clustered Index created takes up the fragmented Extents which were vacated by the previous Clustered Index (green) when it was re-written to
a new location.
There really is no substitute for Segments.

DPL/DRL Lockscheme
• For DOL tables, once the Pages and Extents in the Heap are reasonably

full, unless space is reserved for interspersed INSERTs and row
expansion, it is not possible for rows to be placed "near" each other (as
intended by the Placement Index); logically sequential rows or Pages
could be hundreds of megabytes apart.

• Further, the index Pages in Placement Index and the related data Pages
in the Heap could be hundreds of megabytes apart (while remaining "on
the same Segment", default or otherwise).

AU5120

9.5 Drop, Create Placement Index
A ObjectAllocMap

 ▶AU5120 ▶A ▶Extent
 ▶Extent

P

ObjectAllocMap
 ▶AU5120 ▶A ▶Extent
 ▶Extent
 ▶Extent
 ...

H

P 1 2 3 4 5 6 7 8 P 9 10

For DOL tables containing more than a few Extents, even immediately following a careful de-fragmentation
exercise (DROP/CREATE "CLUSTERED" INDEX in fresh AllocationUnits), although the Heap is initially
contiguous, since the Heap and Placement Index are two separate DataStructures, except for the first few
Pages, the index and data Pages are substantially removed from each other.

I AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII UnusedII PageChainI Segment

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_2_Clustered_Index.html

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 23 of 32

Sybase Data Storage & Fragmentation
10 I Segment

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

Refer to section [] for introduction to Segments; this chapter discusses the value of Segments in reducing or eliminating Fragmentation.
The use of Segments allows groups of tables to be stored together, and thus separated from competing table groups, on discrete Devices. This shows the
AllocationUnits of:

• 6 Segments Data1 through Data6 (table groups, base colours) used for the Clustered Indices of 18 tables (distinct shades)
• for the purpose of explanation, the Devices may well be named Data1 through Data6 as well

• 2 Segments NC1 and NC2, for all their Nonclustered Indices (an arbitrary 3 Nonclustered Indices A, B, C, per table is shown).

10.1 Normal Growth

This shows the same group, eventually fragmented at Level I under interspersed INSERT/DELETE activity (UPDATE only causes Row migration or Page
splits when the columns are variable), which would cause PageSplits, etc; the resulting fragmentation is depicted. Where even simple Segment plans are
used, fragmentation can be substantially reduced; where carefully considered Segment Plans are used, Level I de-fragmentation operations can be avoided
altogether. Even though fragmented, Asynch Pre-Fetch & Large I/O are fully enabled (although slightly less efficient than when not fragmented).
Note also that since the AllocationUnits are laid out initially as per [10.1], the structures are essentially immune to becoming fragmented. Therefore what
is shown here is the result of extreme interspersed INSERT/DELETE activity, and over a long period.
The effect of de-fragmenting single tables (ie. at the DataStructure level, as and when required, via DROP/CREATE CLUSTERED INDEX, to correct Level
II fragmentation as illustrated above, without requiring unload/reload, produces [10.1] for the subject DataStructure. Since each new DataStructure takes
up the Extents of the previous DataStructure, and that latter was unfragmented for the most part; the sequence of Extents is corrected. However, that is
not the completely contiguous, as shown next.

10.2 Fragmented

AU256

AU0

AU512

AU768

AU1024

AU1280

AU2048

AU1792

▶AU0

▶AU256

▶AU512

▶AU768

▶AU1024

▶AU1280

ObjectAllocMap (CI)

Data2

Data1

Data3

Data4

Data5

Data6

NC2

NC1

O1 2 3 4 5 6 7 8

A B C

OO1 21 2 43 3 65 4 87 5 109 6 1211 7 1413 815

BA CA B C

O1 2 3 4 5 6 7 8 9 10

A B C

O O1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11

A B C A B C

O1 2 3 4 5 6 7 8 9 10

A B C

OO1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11

A B C A B C

O1 2 3 4 5 6 7 8

A B C

O O1 1 2 3 2 4 5 3 6 7 4 8 9 5 10 11 6 12 13 7 14 15 8

A B C

A B C

O1 2 3 4 5 6 7 8

A B C

OO1 1 2 3 2 4 5 3 6 7 4 8 9 5 10 11 6 12 13 7 14 15 8

A B C

A B C

O1 2 3 4 5 6 7 8

A B C

OO1 1 2 3 2 4 5 3 6 7 4 8 9 5 10 11 6 12 13 7 14 15 8

A B C

A B C

A

A

A

A

A

A

A

A

Data2

Data1

Data3

Data4

Data5

Data6

NC2

NC1

O1 2 3 4 5 6 7 8

A B C

OO1 21 243 3 6 54 87 5109 612 11 714138 15

BA CA B C

O1 2 3 4 5 6 7 8 9 10

A B C

O O1 1 2 2 3 34 4 55 6 67 7 88 9 9 1010 11

A B C A B C

O1 2 3 4 5 6 7 8 9 10

A B C

OO1 1 223 34 4 556 67 7 88 9910 1111

A B C A B C

O1 2 3 4 5 6 7 8

A B C

O O1 1 23 24 53 6 74 8 9 510 116 12 13 7 14 15 8

A B C

A B C

O1 2 3 4 5 6 7 8

A B C

OO1 1 23 24 53 6 7 48 95 10 11 612 137 14 15 8

A B C

A B C

O1 2 3 4 5 6 7 8

A B C

OO1 1 2 324 53 67 4 8 9510 11 612 137 14 158

A B C

A B C

A

A

A

A

A

A

A

A

AU256

AU0

AU512

AU768

AU1024

AU1280

AU2048

AU1792

▶AU0

▶AU256

▶AU512

▶AU768

▶AU1024

▶AU1280

ObjectAllocMap (CI)

Where Segments are not used, all data is placed in the default Segment. Since all Objects are loaded via concurrent INSERTS, the Extents
are fragmented within the AllocationUnits, and the AllocationUnits are fragmented across all Devices. That case, unfortunately quite
common, is illustrated in sections [] and []. The illustration abovee shows exactly the same quantity of DataStructures and Extents that are
shown in those sections, the numbers continue to identify Extent number within the DataStructure. The above illustrates the result of all
tables being evenly, and concurrently, INSERTED into.
The use of Segments provide three major advantages:

1. Reduction of fragmentation, due to more Extents belonging to fewer DataStructures being placed on each Allocation Unit
• thus Level I de-fragmentation operations are reduced, if not eliminated.
• Asynch Pre-Fetch & Large I/O (multiple Extents, up to an entire AllocationUnit, at Level I) is now reasonably possible, it is worthy

of consideration to the Optimiser.
2. Substantially increased performance, due to:

• enhanced concurrent INSERT speed, for several reasons, primarily because the:
• the tables required in each transaction are separated from each other, on separate Segments, and
• Nonclustered Indices are separated from their data (Clustered Index or DOL Heap), on separate Segments
• onto many Device queues.

3. The absence of Segments results in a few current Allocation Unit Hotspots, on one (the current) Device, despite many Devices being
available. Such hotspots are eliminated.

2.1

98

I AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII UnusedII PageChain

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

24 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
10 I Segment

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

The effect of de-fragmenting most or all the tables in each Segment is illustrated here. Of course, Each Segment can be de-fragmented as and when
necessary; all Segments do not need to be de-fragmented at the same time. Where Segments are not used, none of this is possible.

Data2

Data1

Data3

Data4

Data5

Data6

NC2

NC1

10.3 Fresh
O1 2 3 4 5 6 7 8

A B C

OO1 212 433 654 875 1096 12117 14138 15

BA CA B C

O1 2 3 4 5 6 7 8 9 10

A B C

O O1 12 23 34 45 56 67 78 89 910 1011

A B C A B C

O1 2 3 4 5 6 7 8 9 10

A B C

OO1 12 23 34 45 56 67 78 89 910 1111

A B C A B C

O1 2 3 4 5 6 7 8

A B C

O O1 12 3 24 5 36 7 48 9 510 11 612 13 714 15 8

A B C

A B C

O1 2 3 4 5 6 7 8

A B C

OO11 2 32 4 53 6 74 8 95 10 116 12 137 14 158

A B C

A B C

O1 2 3 4 5 6 7 8

A B C

OO1 12 3 24 5 36 7 48 9 510 11 612 13 714 15 8

A B C

A B C

A

A

A

A

A

A

A

A

To summarise the types of fragmentation covered in Level I:
• AllocationUnits are fragmented across the Database, preventing Asynch Pre-Fetch & Large I/O (multiple Extents up to an AllocationUnit at Level I).
• Extents are fragmented across the AllocationUnits, preventing Asynch Pre-Fetch & Large I/O (multiple Extents up to an AllocationUnit at Level I).
• Such fragmentation can be greatly reduced by implementing Segments, since it limits the physical range of DataStructures.
Further, Segments increase performance by separating DataStructures that compete or contend with each other.

11 Level I Fragmentation Summary

AU256

AU0

AU512

AU768

AU1024

AU1280

AU2048

AU1792

▶AU0

▶AU256

▶AU512

▶AU768

▶AU1024

▶AU1280

ObjectAllocMap (CI)

DPL/DRL Lockscheme
• Placement Indices and Heaps, which are separate DataStructures

(although on the same Segment), are not explicitly illustrated here; a
single pair is illustrated in [].

• Sites that use such tables generally do not use Segments, and thus all
DataStructures in the entire database is fragmented across the single
default Segment. Florists call this "striped", and wonder why it is
slow; engineers call it retarded.

Surrogate Key
• A monotonically increasing value, such as an IDENTITY column,

creates myriad problems, which do not occur with true Relational keys.
• IDENTITY columns are fine for prototype systems (development).

Due to the many attendant restrictions they impose on ordinary
maintenance task, they must not be allowed in production systems.

• It creates an INSERT HotSpot on the last Page, and guarantees
contention.

• The hotspot exists for both APL and DOL tables, with the latter being
slightly faster.

• A monotonically increasing key is the worst candidate for a Clustered
index: choose a Key that distributes the data, and therefore eliminates
the hotspot.

• Contact the author for alternative, high performance methods.

Segment Limit
For large databases, the 29 Segment limit poses an obstacle, which must
be worked around by loading tables in tranches. At the least, when
Clustered Indices are rebuilt to address Level II Fragmentation, they can
be rebuilt singly, and in place, and without the vulnerability illustrated in
chapter [].

Mythology
Based on the naïve belief that The SAN Does Everything, and in
substitution of knowledge or technical examination:
• Myth that fragmentation does not matter when a SAN is used,

because the volumes are striped (effectively "fragmented").
• Myth that Segments are not required where a SAN is used. Reasons

always fall apart under questioning; and the proof is in the pudding.
The SAN, and whatever configuration is implemented, is independent
of ASE, and vice versa. ASE 'sees' the Logical Volume on the SAN as
a contiguous disk allocation, and treats it that way in attempting to
obtain performance out of it (eg. Asynch Pre-Fetch & Large I/O)

Based on the naïve belief that Evangelists Preach the Gospel, while
ignoring the fact that Evangelism is a marketing concept, and in
substitution of genuine knowledge and technical examination:
• Myth that the DOL Placement Index (unfortunately addressed via the

"clustered" syntax), is the same as the Clustered Index.
The unconfused technical term for the two separate DataStructures is

9.5

9

I SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII UnusedII PageChain

Heap and Placement Index

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 25 of 32

Sybase Data Storage & Fragmentation
12 II Page Chain

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

This shows an unfragmented DOL Heap, the data; it is contiguous because
it has been freshly re-ordered via DROP/CREATE CLUSTERED INDEX. It
also shows the unfragmented Placement Index.
• Although the syntax demands "clustered", it is false; the index is in fact

a Placement Index, which is a Nonclustered Index with two additional
criteria (the data is not clustered with the index); the illustration shows
what initial placement does.

This illustrates an unfragmented Clustered Index Leaf level PageChain,
containing index Leaf plus data. It is contiguous, fresh after loading via
bcp or DROP/CREATE CLUSTERED INDEX.
• Asynch Pre-Fetch & Large I/O (multiple Extents, up to an entire

AllocUnit, at Level II, and multiple Pages) are fully enabled.

PageChains exist for:
• Heap (which exists only when there is no Clustered Index)
• Clustered Index (all Index levels & Leaf levels, meaning index and

data Pages, since the Leaf is the data row), as per [].
• Nonclustered Index (Leaf level only)

• This shows the sequence in which the Pages must be fetched when
traversing the PageChain, eg. for Range Queries and Table Scans,
and highlights the interrupts involved in the traversal

• Asynch Pre-Fetch & Large I/O (multiple Extents, up to an entire
AllocUnit, at Level II) are prevented. Multiple Pages are hindered.

• When traversing the PageChain, 15 reads are required instead of 3.
• On a busy server, that could be up to 14 interrupts, or context

switches, which are to be avoided
• PageChains that are fragmented across AllocationUnits require

more of those to be read, and even more I/O
• If the Pages are aged out of the cache during this time, they must

be read again, etc. (Not illustrated.)

• This shows a disturbed PageChain, caused by Page Splits, when full
pages need to be split due to interspersed INSERTS, and no space
being available on the Page.

• This shows Pages out of sequence while remaining in the same
AllocationUnit; the I/O penalty is more severe when the out-of-
sequence Pages are located in other AllocationUnits, as per [].

This part of the document identifies Level II Fragmentation: Pages within Extents, and shows the effect for the different
LockSchemes. There are four aspects to this level, presented in seven sections:
• PageChain Fragmentation
• Overflow Pages
• Unused Space (Pages) per Extent, and
• Unused Space per Page.

12 Page Chain Fragmentation

E512

E520

E528

E512

E520

1 3 4 5 6 7 82

9 11 12 13 14 15 1610

1

3

4 5 6

7

82 9

11

12

13 14

15

16

10

17 19 20

2122 23 24 18

1 3 4 5 6 7 82

9 11 12 13 14 15 1610

1

3

4 5 6

7

82 9

11

12

13 14

15

16

10

17 19 20

2122 23 24 18

8 PagesExtent 8 Pages
ObjectAllocMap
 ▶AU512 ▶A ▶Extent
 ▶Extent
 ▶Extent

C

Heap & Placement IndexClustered Index
ObjectAllocMap
 ▶AU768 ▶A ▶Extent
 ▶Extent
 ▶Extent

H

P ▶AU1280 ▶A ▶Extent

ObjectAllocMap
 ▶AU768 ▶A ▶Extent
 ▶Extent
 ▶Extent

H

P ▶AU1280 ▶A ▶Extent

12.2 Fragmented

12.1 Fresh

12.3 Effect/Range Query & Table Scan

ObjectAllocMap
 ▶AU512 ▶A ▶Extent
 ▶Extent
 ▶Extent

C

• The Heap is fragmented due to DML activity, and no space being
available in the Page, standard fare for monotonically increasing indices.

• The sequence is not real, since Pages are not accessed in sequence; it
merely provides a camparison to that on the left (the real sequence is
much worse)

• To some extent that does not matter, because there is no PageChain and
Range Queries are not supported. However, the overall access to the
table is slowed, and scans must use the OAM method.

1 3 4 5 6 7 82 9 11 12

13 14 15 16

10

17 19 20 21 22 23 2418

• • • •

• • • • • • • •

•

• Range Queries are based on a Clustered Index (index Leaf plus data),
Relational or compound Keys, and require a PageChain; since DOL
tables cannot have a Clustered Index, the feature is not possible for
them.

• Traversing the Heap, eg. Table Scans, requires navigation via the
ObjectAllocationMap; to the Allocation Page; to the Extent; to the Page.
That is much slower than retrieval via a PageChain (or comparable to a
heavily fragmented PageChain)

DataPage/DataRow LockedAllPage Locked

• There is no PageChain for the DOL Heap (it would defeat the purpose of
the RowId based design)

• There is a PageChain for the Leaf level of Nonclustered Indices
(including the Placement Index), as per []

21 43E1280

E768

E60

21 43

Extent

E1280

E768

E776

E784

3.2

8.3

3.3

I SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII Unused

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

26 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
12 II Page Chain

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

DataPage/DataRow LockedAllPage Locked

12.4 Effect/Covered Query
A Covered Query pertains to either Clustered Index or Nonclustered indices (including the Placement Index), where the query can be serviced by
reading the Index Leaf level alone, and reading the data Pages is avoided. This is quite different to Range Queries, which applies to index plus data. It
uses the PageChain available at the Leaf level of the Index.

• Refer to [] for a definition of the CI, note the PageChain at every level of the B-Tree, and at the Leaf (data) level.
• Refer to [] for a definition of NCI or PI and its relation to the data, note the PageChain at the Index Leaf level only.
• Refer to [] and [] for the effect of fragmentation on a Clustered Index on Table Scans and Range Queries.

We will now contemplate the effect of fragmentation on Nonclustered Indices.

1 3 4 5 6 7 82 9 11 12

13 14 15 16

10

17 19 20 21 22 23 2418

• • • •

• • • • • • • •

•

This illustrates the effect of fragmentation on the PageChain of a Nonclustered index (including PI). It shows the sequence in which the Pages must be
fetched when traversing the PageChain, and highlights the interrupts involved in the traversal
• Asynch Pre-Fetch & Large I/O (multiple Extents, up to an entire AllocUnit, at Level II) are prevented. Multiple Pages are hindered.
• When traversing the PageChain, 15 reads are required instead of 3.

• On a busy server, that could be up to 14 interrupts, or context switches, which are to be avoided
• PageChains that are fragmented across AllocationUnits require more of those to be read, and even more I/O
• If the Pages are aged out of the cache, they must be read again, etc. (Not illustrated.)

1 3 4 5 6 7 82 9 11 12

13 14 15 16

10

17 19 20 21 22 23 2418

• • • •

• • • • • • • •

•

Nonclustered or Placement Index

This illustrates an unfragmented Nonclustered Index Leaf level PageChain, containing index Leaf entries. It is contiguous, fresh after DROP/CREATE
NONCLUSTERED INDEX (or "clustered" if it is a Placement Index)

Nonclustered Index
E1280

E1288

1 3 4 5 6 7 82

9 11 12 13 14 15 1610

N ObjectAllocMap
 ▶AU1280 ▶A ▶Extent
 ▶Extent

E1280

E1288

1 3 4 5 6 7 82

9 11 12 13 14 15 1610

N ObjectAllocMap
 ▶AU1280 ▶A ▶Extent
 ▶Extent

Focus
In order to avoid confusion, and to maintain focus, other Levels of
fragmentation are excluded from this Level II discussion. Page level
issues such as the space usage consequences relating to DOL tables are
discussed in . Unused Space within Extents is
discussed in [], Unused Space within Pages is discussed in [].

3.3
3.2

12.2 12.3

14 15
Level III Fragmentation

II PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII Unused

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_3_NonClustered_Index.html

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 27 of 32

Sybase Data Storage & Fragmentation
13 II Overflow Page

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

DataPage/DataRow LockedAllPage Locked

13 Overflow Page

DOL DataStructures do not have Overflow Pages in the sense that Sybase
has not given it a name. However the concept of Forwarded Rows is
identical, and far more frequent (row expansion vs row duplication),
although the overhead is greater. A technically accurate name, in the
context of existing, established names, is Overflow Pages, albeit for
Forwards rather than for Duplicates.
A further difference is that the Forwarded row consumes the space of two
rows, since the original location cannot be used; whereas the APL duplicate
consumes one row.
Since the NonCLustered Index(including Placement Index) and the Heap
are physically separate DataStructures, and row order is not maintained,
duplicate rows are not an issue: the management of duplicate keys can be
handled within the index B-tree structure. For such indices, there is one
Leaf entry (RowId) for each key, whether duplicated or not; the duplicate
rows are merely two Index Leaf entries; two different RowIds.

Additional
Page per
Dupe Key

Clust
Index

ObjectAllocMap
▶AU512 ▶A ▶Ext

C

indid = 1

Overflow pages occur only for a Clustered Index that is non-unique.
For each CI key that is duplicated, an Overflow Page is required, which
contains a chain of duplicate rows, the single original row remaining in
the contiguous CI DataStructure.
The Clustered Index DataStructure is not designed to allow duplicate
keys.
• By definition, in a Relational Database, every row must be unique;

APL tables are highly suited to that purpose; and thus it is not an
issue in Relational tables

• Record filing systems with IDENTITY or surrogate keys should use
DOL tables, and thus it is again not an issue.

• In any case, every CI should be unique; a non-unique CI should be
viewed as a serious error, not merely as additional I/O.

• For 'queue' or 'pipe' or log tables, a Heap without a CI is best. Where
a CI has been chosen (eliminating a Heap), ensure that the CI is
unique.

Heap

Row Forwarded;
Original RowId

Placement
Unchanged

Additional Read
on Every Access

Forwards at
End of Heap

 NCI

ObjectAllocMap
▶AU1280 ▶A ▶Ext

P ObjectAllocMap
▶AU768 ▶A ▶Ext

H
indid = 0indid = 4

Heap & Placement Index/ForwardClustered Index/Duplicate Row

Clustered Index

Nonclustered Index

II PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ III PageII Unused

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_2_Clustered_Index.html

28 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
14 II Unused Space Extent

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

For all DataStructures, a few empty slots in each Page (via FILLFACTOR) and a few empty Pages in each Extent (via
RESERVEPAGEGAP) is desirable, to allow for interspersed INSERTS. However, where there are more interspersed DELETES than interspersed INSERTS,
this may be more than is desired. Where there are no interspersed INSERTS, unused space is not required.

• Asynch Pre-Fetch & Large I/O (multiple Pages, up to an entire
Extent, at Level II), where Extents are requested, is not hindered.
The self-modulating Look-Ahead Set is simply scaled down a little,
unless the ratio of empty Pages is large.

• This applies when traversing the Clustered Index, eg. for Range
Queries, Covered Queries and Table Scans, and traversing the
Nonclustered Index for Covered Queries.

14 Unused Space/Extent

1 3 4 5 6 7

8

2

9 11 12 1310

E512

E520

The issue relevant to unused space is, whether it was planned or not; and only the latter is a problem. Let us consider unused space that is unplanned.
Here the DataStructure that contains the data rows (Clustered Index for APL or Heap for DOL) is most relevant, and detailed below. Nonclustered
Indices do get fragmented (in the category of unused space), when there are bulk DELETES that are interspersed. However, this is easy and fast to correct
(drop and create the index). In any case, Nonclustered Indices are affected more by disturbed PageChains, than by unused Extents or Pages.

DataPage/DataRow LockedAllPage Locked

14.1 Effect
• Asynch Pre-Fetch & Large I/O (multiple Pages, up to an entire

Extent, at Level II), where Extents are requested, is somewhat
hindered. The self-modulating Look-Ahead Set is scaled down a
little more than in APL.

• This applies when traversing the relevant Nonclustered Index, eg. for
Covered Queries.

• Range Queries are not supported for DOL tables.
• Table Scans use the OAMPage access method.

1 3 4 5 6 7

8

2

9 11 12 1310

E1280

E1288

1 3 4 5 6 72

8 9 11 12 1310

1 3 4 5 6 72

8 9 11 12 1310

Both CI and NCI are shown here, obviously the effect on data Pages,
and the correction thereof, is much more serious. The NCI is easy and
fast to correct.

Both the Heap and Placement Index are shown here, obviously the effect
on data Pages, and the correction thereof, is much more serious.
Correcting the Heap constitutes a demand to drop and create the Placement
Index (unfortunately addressed via the "clustered" syntax), since the PI
defines initial placement of rows in the Heap.

E768

E776

E1280

E1288

ObjectAllocMap
 ▶AU768 ▶A ▶Extent
 ▶Extent
 ▶Extent

H

N ▶AU1280 ▶A ▶Extent

ObjectAllocMap
 ▶AU512 ▶A ▶Extent
 ▶Extent
 ▶Extent

C

8 PagesExtent 8 Pages

C

Heap & Placement IndexClustered Index
Extent

Nonclustered or Placement IndexNonclustered Index
N ObjectAllocMap

 ▶AU1280 ▶A ▶Extent
 ▶Extent

1 3 4 5 6 7

8

2

9 11 12 1310

E1280

E1288

N ObjectAllocMap
 ▶AU1280 ▶A ▶Extent
 ▶Extent

II PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ III Page

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 29 of 32

Sybase Data Storage & Fragmentation
15 II Unused Space Page

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

• Asynch Pre-Fetch & Large I/O (multiple Pages, up to an entire
Extent, at Level II), where Extents are requested, is not hindered,
since the Pages are trimmed. The self-modulating Look-Ahead Set is
simply scaled down a little, unless the ratio of Unused Space per page
is large.

• This applies when traversing the Clustered Index, eg. for Range
Queries, Table Scans, and traversing the Nonclustered Index for
Covered Queries.

• Asynch Pre-Fetch & Large I/O (multiple Pages, up to an entire Extent, at
Level II), where Extents are requested, is somewhat hindered, since the
Pages are not trimmed; DELETED rows are not deleted; and rows are
Forwarded. The self-modulating Look-Ahead Set is scaled down a lot
more than in APL.

• This applies when traversing the relevant Nonclustered Index, eg. for
Covered Queries.

15 Unused Space/Page

E512

E520

This illustrates the result of heavy interspersed INSERT/DELETES at the Page level for the Lock Schemes, the rows in the Pages in the same pair of
Extents in [12] above are shown.

15.1 Effect

DataPage/DataRow LockedAllPage Locked

Note that even at this level, the forwarded rows (red); forwards (dark
pink); and deleted rows (dark grey) are visible, separate from unused space
(light grey). The additional space requirement is obvious. (In order to
avoid confusion, Level III Fragmentation is excluded from this Level II
discussion; it is discussed separately, overleaf.)

Reserved Space/DOL
• Fixed length rows are best, because it eliminates Row Forwarding

entirely. However, if that cannot be achieved, the EXP_ROW_SIZE
should always be set correctly.

To summarise the types of fragmentation covered in Level II:
• PageChains are fragmented across Extents, or worse, across AllocationUnits.

• This prevents Asynch Pre-Fetch & Large I/O (multiple Extents and Pages at Level II).
• Such fragmentation can be greatly reduced at the highest level by implementing Segments, since it limits the physical range of DataStructures.
• It can be reduced at the DataStructure level by reserving space for expected interspersed INSERTS and row expansion. Disk space is cheap.

• Unplanned Unused Space within Extents and within Pages scale down Asynch Pre-Fetch & Large I/O.
• Planned reserved space maintains the speed of the DataStructure. Yes sir, everything in a computer system is a trade-off.

• Level II fragmentation is corrected via DROP/CREATE CLUSTERED INDEX with the appropriate FILLFACTOR.

16 Level II Summary

E792

E768

E776

Deleted,
Expanded

Forwards

The Page is kept trim: rows are shifted upon deletion and row
expansion/contraction.

1 3 4 5 6 7

8

2

9 11 12 1310

E512

E520

1 3 4 5 6 72

8 9 11 12 1310

E768

E776

Elimination of Row Movement
• Variable length rows is the main causes of Deferred Writes,

which are much slower than Direct Writes.
• Row movement within the page, and the consequential PageSplits

(in APL), and Row Forwarding (in DOL) is caused by row size
changes. This can be eliminated by implementing fixed rows.
That means elimination of variable length and Nullable columns.

Reserved Space
• Space can always be reserved, for any DataStructure (Heap, CI,

NCI) via:
RESERVEPAGEGAP: reserve Page(s) per AllocationUnit or Extent
FILLFACTOR: reserve space per Page

• use sp_chgattr in order to make the settings permanent

14

II UnusedII PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ III Page

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_2_Clustered_Index.html
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_4_Placement_Index.html

30 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
17 III Page

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

Page
Chain

Level III is a new form of fragmentation (Pages and Rows) that applies to DOL tables only. These pages illustrate the
fragmentation in their DataStructures, as a consequence of normal DML activity, step by step, and compares them with APL. Understanding the different
DataStructures and their relations, is a pre-requisite.

New Page
at End

of Page
Chain

17.2 Clustered Index Next Sequential Insert Heap & Placement Index Next Sequential Insert

17.4 Clustered Index Interspersed Insert/No Space
Original Page is Split
Contiguity of Page
Chain is disturbed

Heap & Placement Index Interspersed Insert/No Space

Heap & Placement Index Fresh17.1 Clustered Index Fresh

DataPage/DataRow LockedAllPage Locked

New Page at
End of Heap

New Page at
End of Heap

Heap

PageChain Fragmentation is Level II, shown here for comparison.
In terms of the CI, or logically, the split pages appear next to each
other. Physically, the new page is at the end of the structure.

Heap

• The page does not need to be full; if
the new row causes existing RowIds to
move, a new Page or Extent is used

No PageChain
to disturb

17.3 Clustered Index Interspersed Insert/Space

 NCI

NCI

p.1
p.2

Clust
Index

• The next (new max) value of a
monotonic or surrogate Key.

• Such keys are the worst
candidate for a Clustered Index

Clust
Index

Heap
NCI

• A random value of a Relational
(composite) Key, where there is
space on the page. The rows
remain ordered and distributed.

• Such keys are the best
candidates for a Clustered Index

Clust
Index

Heap & Placement Index Interspersed Insert/Space

• APL DataStructures are Clustered Index based, and
• The Clustered Index is kept ordered and trim

• DOL DataStructures are Static Heap based, and
• The Heap is not ordered, it is not kept trim

Before launching into the detail, the key issue that must be understood, the essential difference between APL vs DOL is:

Page Chain
at Every

Index Level

Leaf Level
is Data Row

B Tree

Clust
Index

Leaf Page

 Rows

Leaf Level
Data Row

indid = 1

B-Tree Entry

ObjectAllocMap
▶AU512 ▶A ▶Ext

DB

Clustered
Index is
Sparse

Leaf Level

Page Chain
at Leaf

Level Only

Heap

indid = 3
ObjectAllocMap

▶AU1280 ▶A ▶Ext
N ObjectAllocMap

▶AU768 ▶A ▶Ext
H
indid = 0

 NCI
B Tree

IndexKey RowIdB-Tree Entry Data Row

No PageChain:
Scans must use

OAM method

p.2

p.1

• Shows that fleeting moment after
REORG, when the order in the Heap
matches the order in the PI

• The next (new max) value of a
monotonic or surrogate Key.

• A random value of a Relational
(composite) Key, where there is space
on the page. The rows are not
ordered; it is located "near by"

Static Heap basedClustered Index based

DataStructures

II UnusedII PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation
http://www.softwaregems.com.au/Documents/Sybase%20GEM%20Documents/Sybase%20Data%20Storage%20V2_4/3_1_Heap.html

Derek Asirvadem • V2.5.1 • 12 Sep 15 Sybase Data Storage & Fragmentation • 31 of 32

Sybase Data Storage & Fragmentation
17 III Page

Copyright © 2012 Software Gems Pty LtdDerek Asirvadem

Heap

Heap

Row Forwarded;
Original RowId

Placement
Unchanged

Additional Read
on Every Access

Forwards at
End of Heap

 NCI

Heap & Placement Index Interspersed Update (Expand)

17.5 Clustered Index Interspersed Delete

 NCI

Heap & Placement Index Interspersed Delete

17.7 Clustered Index No Page Fragmentation Heap & Placement Index Page Fragmentation

17.6 Clustered Index Interspersed Update (Expand)

Rows Shifted;
Pages are
trimmed

Clust
Index

 NCI

46 Deleted

47 Expanded

RowIdsPage P4

P4

P4

P93

45 46 47 48 49

45 47 48 49

45 48 49

91 47 92 95 47 Forward

sysindexes.indid = 1 indid = 0

Heap

Rows Shifted;
Pages are
trimmed

Deletes Marked
but not Removed;

Pages are not
trimmed

RowIdsPage P4

46 Deleted

47 Expanded

45 46 47 48 49

45 47 48 49

45 47 48 49

P4

P4

P93 Available

DataPage/DataRow LockedAllPage Locked

indid = 2

Forwarded Rows

Shown here for comparison only. In APL tables there is no
Level III Fragmentation, and the Pages are kept trim.

Level III Summary18 Level III Summary

• No Level III Fragmentation:
• Deletes are immediate, there is no dead space
• Row expansion is in place, there is no Row Forwarding
• No REORG required

• There are therefore two levels of difference between APL and
DOL DataStructures, regarding maintenance or performance

• Level III Fragmentation:
• Deleted row positions are not reused: dead space
• Row expansion causes Row Forwarding (twice the space usage)
• Regular REORG REBUILD is demanded
• Substantial additional space requirement

Deleted Rows

Shown here for comparison only, there is no Level III
Fragmentation in APL tables. PageChain fragmentation is
Level II.

• Note the unused space; it cannot be
used for new rows.

• Note the unused space; it cannot
be used for new rows. Forwards
consume twice the space.

Forwards:
Overflow
Pages

INSERTed
Rows at End

Page
Chain No Page

Chain

Clust
Index

Clust
Index

III PageII UnusedII PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

32 of 32 • Sybase Data Storage & Fragmentation

Sybase Data Storage & Fragmentation
19 Index Type

Copyright © 2012 Software Gems Pty Ltd Derek Asirvadem • V2.5.1 • 12 Sep 15Derek Asirvadem

NCI_segment

sysindexes.indid = 3 & 4

data_segment

sysindexes.indid = 0 & 2

NCI_segment

sysindexes.indid = 2 & 3

data_segment

sysindexes.indid = 1

data_segment

sysindexes.indid = 0

data_segment

sysindexes.indid = 0

NCI_segment

sysindexes.indid = 2

data_segment

sysindexes.indid = 0

NCI_segment

sysindexes.indid = 2

data_segment

sysindexes.indid = 0

data_segment

sysindexes.indid = 1

data_segment

sysindexes.indid = 0 & 2

NCI_segment

sysindexes.indid = 3 & 4

data_segment

sysindexes.indid = 0 & 2

NCI_segment

sysindexes.indid = 2 & 3

data_segment

sysindexes.indid = 1

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

Only DOL tables are afflicted by Level III
Fragmentation, which is shown here in summary form:

Deleted Rows
Forwarded Rows
Forward

F

C5

G

A

C

D

F

Z

C5

B

E

I
I
I
I

I

3
I
I
4

I
I

I

2
I
I

1
I

I
I

Heap & Placement Index19.3 Clustered Index

Heap plus NCI (No Placement Index)

Heap (Always)

19.2 Heap plus NCI (When No Clustered Index)

19.1 Heap (When No Clustered Index)

Heap & Placement Index plus NCI19.4 Clustered Index plus NCI

• RowId based, RowIds do not move
• The Placement Index and the Heap

remain separate storage (sysindexes)
structures, but on the same Segment.

• Rows are placed in order initially (but
that cannot be maintained under DML
activity)

• Rows are not shifted on INSERT/
DELETE/UPDATE (Expand/Shrink)

A
B
C
D
E
F

Z

• Rows are maintained in Clustered
Index order

• The Heap is eliminated
• Pages & Extents are trimmed
• One less I/O on every access.
• RowIds may change on

interspersed INSERT/DELETE/
UPDATE (Expand/Shrink)

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

Level III Fragmentation

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

A
B
C
D
E
F

Z

• Chronological (INSERT) order • Chronological (INSERT) order

19.5 No Level III Fragmentation

A

C
D

F

Z

B

E

C5

DataPage/DataRow LockedAllPage Locked

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

A
F
C
Z
E
D

B

A
F
C
Z
E
D

B

A
F
C
Z
E
D

B

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

A
F
C
Z
E
D

B

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

A
B
C
D
E
F

Z

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

A
B
C
D
E
F

Z

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

I
I
I
I

I

3
I
I
4

I
I
I

2
I
I

1

R

R
R
R

R
R
R

APL Dis/Advantage
• Extents and Pages are kept trim, to maintain contiguity
• RowIds change if Page is split or row is expanded:

• NCI entries need to be updated if the RowId in the CI changes
• Clustered Index & Page Chain allows Range Queries
• No Level III fragmentation; REORG (offline maintenance) is not required

DPL/DRLDis/Advantage
• Row Ids do not change: • Rows do not move
• No Page Chain
• No Range Queries
• Becomes heavily fragmented (Level III) over time

• Expanded rows are forwarded
• Inserted rows placed at end of Heap
• Deleted rows are not deleted (only marked for deletion)
• Regular de-fragmentation via REORG REBUILD (offline) is required
• REORG RECLAIM_SPACE & FORWARDED_ROWS are ineffective in

correcting Level III Fragmentation

Indices are B-Trees:
Level, Index Height
Intermediate Level
CI Leaf: Data row
NCI Leaf: RowId

4
II

Z

R

4

III PageII UnusedII PageChainI SegmentI AllocUnitDataStructUnitIntro Defn II Determ III Determ

Full Detail

mailto:derek.asirvadem@gmail.com?Subject=Sybase%20ASE%20DataStruct%20Fragmentation

	Cover
	Introduction
	1 Data Storage Unit
	2 DataStructure
	2 DataStructure
	3.1 Heap
	3.2 Clustered Index
	3.3 Nonclustered Index
	3.4 Placement Index
	4 Data Model • Catalogue
	5 Data Model • DataStructure
	6 Definition
	6.1 Impact
	6.2 Fragmentation Type
	7 Determination
	7.2 Determination II Space
	7.3 Determination II DerivedStat
	7.4 Determination III
	7.6 Determination Partition
	8 I Allocation Unit
	9 I Drop-Create
	9 I Drop-Create
	10 I Segment
	10 I Segment
	12 II Page Chain
	12 II Page Chain
	13 II Overflow Page
	14 II Unused Space Extent
	15 II Unused Space Page
	17 III Page
	17 III Page
	19 Index Type

