
Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 1 of 7

Transaction Sanity
Reality vs Academic Isolation

Academia
"Academic" Isolation from reality; practice; implementation
Clueless about implementation; Online; Transaction; ACID

OLTP Gold Standard • IBM/CICS/TCP 1

ACID Transaction 2

Client/Server Architecture • Britton-Lee, Sybase
Open Architecture Standard

Relational Model
Commercial SQL

Ordinary Locking

"Relational Model"
Anti-Relational, Physical, Record Filing System
"SQL is broken" (SQL is Relational)

"Multiple Version Concurrency Control"
Fraud: No concurrency control
ACID not possible
Denial of two Db principles: db is single version of 

truth; db is a shared resource

Ingres
100% filth

Oracle
Not ACID; not SQL

Sybase

DB2

MS

Freeware
Forty years behind commercial SQL
PostGres

Second generation filth
Fraud (Not SQL)

Pre-Relational DBMS

Isolation from Reality
Fantasy notions of the real world; db science; industry; for fifty years
Foundation for their speculations, posed as "academic literature"
Including Straw Man notions of things in reality (above), required to 

maintain said isolation:

1965

Present

1980

1980

OLTP Implementation
SG OLTP Standard

2000 Present

Reality: Industry; Science; Actual Progress
This illustrates the appearance of specific technology under discussion, the progress of Transaction Processing in the real world, from its initial 
implementation to the present day.  It is in chronological order (left to right, and an occasional scale with dates). 

The entire progress in this science (not only Transaction Processing, but 
the entire database science) has been through platform vendors and their 
engineers, the genuine cutting edge.  For decades.  With the single 
exception of Dr E F Codd, who was and is, unsurprisingly, loved by the 
vendors who implemented his Relational Model, and by capable 
practitioners who did the same, but hated by academia.
Academia fails totally, by divorcing themselves from Logic; science; 
implementation concerns, ensuring that they can never serve the industry 
that they claim to serve.
The most relevant point here is, they have no idea that Transaction 
Processing is a science, with implementation elements in both the 
database and the application.  The Form has not changed since 1965 (truth 
does not change), the syntax has progressed merely to accommodate the 
progression of platforms.
The Software Gems OLTP Standard implements a high-performance 
OLTP context: lowest contention; highest concurrency, plus security 
layers that are integrated into the platform.  It is not the subject of this 
paper, it is not expanded here.

Academia: Isolation; Ignorance; Pseudo-science; Fantasy
This illustrates the appearance of notions among the academics, who isolate themselves from the real world, and thus are ignorant of it (even to 
this day), having produced nothing to progress the science in this field.  The steadfast insistence on isolation, permits "progress" in their darkness, 
which in reality is pathetic regress.

RealityReality

Pre-
Relational

DBMS
Academia

Industry Trans
action

SQL

Locking

2PL

DB
Science

Relational
Model

Examples of their abdication:
• Theory should be divorced from implementation concerns
• The server is a black box, physical, to be ignored
• The Transaction is irrelevant, a server concern, etc.
Example of their false Straw Man notions:
• Record Filing Systems marketed as the "Relational Model"
• The RM is broken
• SQL is broken
• A Transaction is anything between BEGIN and COMMIT
• Text only, visual modelling does not exist
• Pigs do fly and so can I, etc.
In fifty years, there has not been a single paper that articulates or 
progresses the Relational Model.  
In contrast, there has been hundreds of papers promoting this filth, or 
"inventing" wheels that were perfected in the industry fifty years earlier, 
vociferously ignorant of such facts due to their hysterical isolation, and 
plodding along with "progressions" that have no completion; no 
resolution, only more speculation upon speculation.
In staggering contradiction to their insistence on ignorance of 
implementation matters, they program young minds to produce an 
implementation, and market it heavily, on the ground of "academic" 
authority.  In recent times, their backward and ignorant "methods" have 
found a brave new level of catastrophic failure: the proliferation of 
freeware.  Eagerly embraced by the uneducated developers of today.
Due to their denial of the reality that the Stonebraker "method" did not 
work, and inability to determine that it is not science but fantasy, they 
repeat the same thing over again, expecting different results.
Oracle deserves a special mention.  It sits squarely in this category:
• un-architected massive suite of programs masquerading as a "server"
• MV-non-CC with a bolted-on Lock Manager to make it work a little
• Not SQL compliant
• Cannot support ACID
• Fraudulent declarations
Much like MicroSoft in the last forty years, it is a terrible product, but 
with fantastic marketing.  
For an understanding of architectural issues, the difference between 
program suites (freeware & Oracle) vs genuine commercial servers, refer 
to Oracle vs Sybase.Oracle vs Sybase

1 Not TCP/IP of today, but Terminal Control Program within CICS, that controlled the time-shared execution of multiple programs, each connected to a terminal.  It 
was often called Transaction Control Program because Transactions were central; and a program executed just one Transaction: thus it resolved Transaction 
contention issues.  At best, such programs were re-entrant: one pure code program used by multiple Terminals/users.  For more detail, and a short trip into history, 
visit History of IBM Mainframes.

2 Historically, the initial and most reliable Transaction Processing method, well established, although the term ACID was not used.  During the RDBMS wars, the 
benchmarks were fraudulent, due to vendors cheating on the definition of Transaction.  The Transaction Processing Council standardised Transactions and coined the 
term ACID for the strict definition of Transaction.

History of IBM Mainframes

1984

https://www.softwaregems.com.au/Documents/Article/Oracle%20Circus/Oracle%20vs%20Sybase.pdf
https://www.wisdomjobs.com/e-university/ibm-mainframe-tutorial-464/history-of-ibm-mainframes-13651.html


Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 2 of 7

Transaction Sanity
OLTP Context vs MV-non-CC Isolation

BEGIN TRAN
REPEATABLE_READ

Fo
ur

 W
el

l-K
no

w
n 

Is
su

es

READ_COMMITTED
Contention GuaranteedReduction of [Implicit] Lock Contention OLTP StandardStandard

Offline Version Processing (Single User, Schizophrenic)
Isolation (contrived, tiled cell)

Nothing Shared
No sociability concerns
No concept of OLTP; ACID

ACID not possible
No Concurrency Control

Online Transaction Processing
Shared Resources

Social Behaviour (Rules)
Lock Manager (Enforcer, Concurrency Control)
Minimal contention (Various)

ACID Context (Client & Server)
Synchronisation Failure; "Serialisation Anomalies", not possible

4 Deadlocks

Client Application (Multiple)

Shared Database (Single)
Single version of Fact
Server ACID
Transaction context
Optimistic Locking

High Concurrency
No Lost Updates
No Lost Currency

ACID Transaction
Transaction ACID
Invisible (Isolation)

Validate
Exec Transaction

Retrieve

Fully Relational (Logical)
Fully constrained

DKNF per Codd Intent
Defined as Predicates
Modelled & documented in

IDEF1X/R, Logic Map
Secured (No direct writes)
OLAP is pedestrian

Transaction
Validate
Execute

Client Application (Multiple)

Actual "Database" (RFS)
After-the-Fact Resolution

Massive Churn
More Versions

Private Version of "Database"
Multiple x Users
"Transaction Isolation"

All verbs, incl SELECT
? Transaction Consistency
"Constraints" in app code

Commit
Resolution of versions; fantasies
"Serialisation Anomalies" = Fail

Clean Up
Massive storage overhead
Garbage collection
Vacuum clean
Shrink/Expand

Dashed line means fantasy.  There is a sucker born every minute.

Additional Application Locks; Predicate Locks
Proves "MVCC" is failure
Dangerous (outside server); not SQL verbs

Pre-Relational Platform 1

Commercial SQL PlatformOLTP Consideration

Level SQL Method

"SQL"
Program Suite

Lock Contention (Explicit, by Application) 7

2 Lost Updates, not Durable
3 Lost Currency, not Consistent

1 Phantoms; Anomalies
Statement Integrity

OLTP Standard/ Access Sequence
Optimistic Locking
Optimistic Locking

Guaranteed 7 8

Guaranteed 4
Unknown, Guaranteed
Unknown, Guaranteed 2

Stale data 2

Guaranteed 5

ResultSet (multi-Statement)  
Integrity

ACID Properties OLTP Standard ACID Not possibleFull ACID

OLTP Context
This illustrates elements relevant to Online Transaction Processing, and compares the emerging "RDBMS" freeware that is defined and heavily 
promoted by academia vs the established commercial RDBMS platforms, characterised by MV-non-CC vs Ordinary Locking.  The scope is limited 
to the relevant issues herein, and related elements only (for the sake of completion), it is not a full comparison of those elements, nor an overall 
comparison.  MySQL although freeware, and generally in the same category, has a paid engine, which is a far better implementation than PusGres.

Transaction Consistency & Durability
This illustrates and allows comparison of the well-known Transaction Consistency problems (as distinct from Database Consistency), and their 
solutions, both well-known since 1965 (pre-Relational) and the 1980's (Relational).  Due to the abject abdication of their role as scientists for the 
industry (insistent divorce from reality; from implementation concerns; etc), the academics are clueless, and are exposed to these problems only 
after implementation (yet another contradiction) of their speculations, fifty years after they were solved in reality.  They are still speculating about 
the results of their speculations, with no solutions (either knowledge or more speculations) in sight.  It also shows the contrast between SQL-
compliant servers and non-compliant pretend "sql" program suites (pretend "servers").

1 SQL Verbs are given.  In pre-Relational Platforms, the access method & verbs were proprietary.
2 The acceptance of working with stale data is stupefying.  More precisely, it is ignorance of the fact that the version, once obtained, is obsolete, and offline.
4 Not supposed to happen under MV-non-CC ... but it does (a) serialzation_failure, and (b) due to manual locking, which is required for Concurrency Control.
5 A special & unique feature of PoopGres, that other MV-non-CC program suites do not suffer, meaning that the limit of permutations of the fantasies has been reached.  

This is the result of (a) ignorance: that consistency regards contention resolution over shared resources (server design), and (b) stupidity: taking SERIALIZABLE as a 
directive regarding processing methods in the "server", rather than understanding it for what it is: a concept, as in Transactions appear to be serialised.  Thus the fantasy, 
the hardened notion of "Transaction Isolation", in substitution for server design.  It is refusal to understand ACID Properties, to fantasise instead. 

6 The MV-non-CC groupies recite a mantra about Ordinary Locking, to make it look terrible, which is false because it is prohibited, it is pure Straw Man.  In reality, it is the 
groupies that perform "pessimistic locking", and for uncontrolled durations, when they use manual locking, due to ignorance and lack of structure.

7 A Lock Manager is anathema in MV-non-CC ... but the failures are so bad that a primitive Lock Manager has been added.  Apps that need Concurrency Control must use 
manual, non-SQL  lock requests, which creates a new level of error (uncontrolled duration; deadlocks; etc), which is fatal (outside "server" control & resolution).  

8 The manual Locking in MySQL uses named application locks, thus it is not vulnerable to interference by app code, or to deadlocks.  If they occur, it is in the app.

Synchronisation Failures; "Serialisation Anomalies" 5

Guaranteed 6"Pessimistic Locking" 6 Prohibited
Not possible

M
V-

no
n-

CC

Not possible

No Logical, 100% Physical
No Normalisation
Modelled & documented using

Anti-Relational ERD
No Security (wide open)
No Database Consistency
OLAP not possible

• Lost Updates (oblivious)
• No concept of currency: rows are 

versioned at retrieval, not the row 
TimeStamp

BEGIN TRAN
SERIALIZABLE

Statement Integrity



Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 3 of 7

Transaction Sanity
Example Database[ Bank Account ]

IDEF1X Notation

CreditRating
CreditRatingCode
Name

Defines

Restricts

Comprises

Limits

Transacts Against

Person

CreatedDtm
BirthPlace       AK.5
BirthDate        AK.4
Initial          AK.3
NameFirst        AK.2

CreditRatingCode
NameLast         AK.1

PersonId

AccountType
AccountTypeCode
Name

TransactionType
TransTypeCode
Name

Account

PersonId
AccountId

DateLastMonth
CreatedDtm

BalanceLastMonth
Name

JournalEntry

CreatedUserId
CreatedDtm
Amount
TransTypeCode
DateTime
AccountId

• A simplified model of a financial database, with enough structure to expose the issues 
discussed herein

StatementMonth

Person.CreatedDtm

JournaleEntry.CreatedDtm

Account.CreatedDtm

JournaleEntry.TransTypeCode

Account.DateLastMonth

JournaleEntry.Amount

JournaleEntry.Date

Account.BalanceLastMonth
Account.Name
AccountId

Person.BirthDate
Person.NameFirst

BalanceCurrent

Person.NameLast
PersonId

http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf


Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 4 of 7

Transaction Sanity
Lost Update

Time
T1

T2

T3

T4

T5

• Blue: resident in the server (Transaction stored proc)
• Green: resident in the Client

• Pink: in the pink

User interaction, uncontrolled durationBEGIN TRAN TweedleDumb
UPDATE Person SET
    CreditRatingCode ="D",
    BirthPlace       = @BirthPlace,
    WHERE PersonId   = @PersonId
COMMIT TRAN TweedleDumb

User interaction, uncontrolled duration

Credit Manager changes Credit Rating D; $0 overdraft

Person has a Credit Rating A which allows $10,000 overdraft
Person fails to keep agreements re covering their overdraft

User 1

SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace
    FROM Person 
    WHERE PersonId = @PersonId

There are two major concurrency problems that are caused by the delay between obtaining a value from the database (painting it on the GUI), and 
the execution of the Transaction (either a proper stored proc in the server or a string of SQL in the app).  These are problems that cannot be 
expected to be handled by an ACID-compliant server, or by an OLTP server, because the location of the problem is in app code, not in server 
facility.  (The same as deadlocks: there are no deadlocks in the distribution, all deadlocks are written in the application.)
• The Lost Update problem, although lesser-known, is easier for novices to understand, thus it is given first.  
• It is an ordinary consequence of that uncontrolled duration, but this problem is deadly to Data Integrity or Transaction Durability, not to OLTP 

proper.  That is, the "transaction" fails the Durable property of ACID.  
• There are many flavours or nuances to the Lost Update, this page illustrates one such species.  Once it is understood, the other species can be 

appreciated, as being of the same genus.

• Error checking & handling, which is mandatory for every verb, is excluded for brevity
• Time marks the moment of execution of the command or Transaction

Succeeded, Credit Rating D

Succeeded, Credit Rating A
Lost Update: User 1 Credit Rating D

BEGIN TRAN TweedleDumber
UPDATE Person SET
    CreditRatingCode = @CreditRatingCode,
    BirthPlace       = "Timbuktu",
    WHERE PersonId   = @PersonId
COMMIT TRAN Dumb_Two

User 2

SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace
    FROM Person 
    WHERE PersonId = @PersonId

Person has a balance of $5,000 DR (overdrawn)
Person phones bank clerk
Checks that he still has Credit Rating A
Changes his address

Uncontrolled duration,
No locks held,
Data Currency ignored

Controlled duration,
Locks held,
Data Currency lost.
Separation of Validate & 
Execute blocks (structure) is absent.

Succeeded, due to Credit Rating A, the Lost Update

User 3

BEGIN TRAN Dumb_Withdraw
SELECT  @CreditRatingCode = CreditRatingCode,
        @Balance = BalanceLastMonth + (
        SELECT SUM(Amount)
            FROM JournalEntry
            WHERE AccountId = a.AccountId
            AND   DateTime >  a.DateLastMonth
            )
    FROM Person p,
         Account a 
    WHERE p.PersonId  = @PersonId
    AND   p.PersonId  = a.PersonId
    AND   a.AccountId = @AccountId
SET @AmountLimit = CASE @CreditRatingCode
    WHEN "A" THEN @Balance + 10000
    WHEN "B" THEN @Balance + 1000
    ELSE          @Balance
    END
IF @Amount <= @AmountLimit
    BEGIN
    INSERT JournalEntry VALUES (
        @AccountId,
        GETDATE(),
        CASE WHEN @Amount < 0 THEN "DR"
             ELSE "CR" END,
        @Amount,
        GETDATE(),
        SUSER_ID()
        )
    COMMIT TRAN Dumb_Withdraw
    RETURN 0 -- Transaction Accepted
    END
ELSE
    BEGIN
    ROLLBACK TRAN Dumb_Withdraw
    RETURN 1 -- Transaction Rejected
    END

Person attempts to withdraw $2,000 at the bank
EXEC Dumb_Withdraw_tr
@PersonId,
@AccountId,
@Amount = -2000

Credit Manager

The system said
he could: he is on 
Credit Rating A

Why did you
let him have $2,000 on 
overdraft, after I set his 

Credit Rating to D?

Teller

User
3

User
1

The system is 
broken !  We can't 

work like this !

ACID • Durable
• The Transaction must be 

Durable: it must survive
• Failed Durable



Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 5 of 7

Transaction Sanity
Lost Currency

Time
T1

T2

T3

T4

T1

T3

T2
User interaction, uncontrolled duration:

coffee
phone call
toilet break

Credit Manager changes Credit Rating D; $0 overdraft

Person has a Credit Rating A which allows $10,000 overdraft
Person fails to keep agreements re covering their overdraft

User 1

Succeeded, Credit Rating D

User interaction, uncontrolled duration

BEGIN TRAN TweedleDumb
UPDATE Person SET
    CreditRatingCode ="D",
    BirthPlace       = @BirthPlace,
    WHERE PersonId   = @PersonId
COMMIT TRAN TweedleDumb

User interaction, uncontrolled duration

Credit Manager changes Credit Rating D; $0 overdraft

Person has a Credit Rating A which allows $10,000 overdraft
Person fails to keep agreements re covering their overdraft

User 1

SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace
    FROM Person 
    WHERE PersonId = @PersonId

• The better-known problem is Lost Currency.  It does not pertain to Data Integrity, but to Transaction Consistency.  The causative problem is 
that delay between obtaining a value from the online shared database (painting it on the GUI), and the execution of the Transaction.

• Nevertheless, it needs to be understood logically (top-down), not merely physically (bottom-up), such that the problem is solved logically.

Succeeded, Credit Rating D

Succeeded, Credit Rating A
Lost Update: User 1 Credit Rating D

BEGIN TRAN TweedleDumber
UPDATE Person SET
    CreditRatingCode = @CreditRatingCode,
    BirthPlace       = "Timbuktu",
    WHERE PersonId   = @PersonId
COMMIT TRAN Dumb_Two

User 2

SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace
    FROM Person 
    WHERE PersonId = @PersonId

Person has a balance of $5,000 DR (overdrawn)
Person phones bank clerk
Checks that he still has Credit Rating A
Changes his address

Uncontrolled duration,
No locks held,
Data Currency ignored

Controlled duration,
Locks held,
Data Currency lost.
Separation of Validate & 
Execute blocks (structure) is absent.

Credit Manager

The same thing 
happens to me.  It 
is not consistent

Most of the time, my 
transactions work, but 

occasionally they 
disappear

Teller

User
3

User
1

The system is 
broken !  We can't 

work like this !

• Question: at Time[ T3 ] and [ T4 ], What is the basis for 
confidence, that the "transaction" is valid ?

• Answer: the hysterical notion that, in that uncontrolled 
duration between retrieval and execution, the online 
shared database has not changed.  

• Again the schizophrenic mindset, the client-version-
centric mindset, in denial of the reality of an online 
shared database, of the single version of the truth.

Naïve "Solution"

BEGIN TRAN TweedleDumb
SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace
    FROM Person [HOLDLOCK]
    WHERE PersonId = @PersonId

Uncontrolled duration,
Locks held,
Data Currency forced

Other users Locked Out
for uncontrolled duration

-- Continue TRAN TweedleDumb
UPDATE Person SET
    CreditRatingCode ="D",
    BirthPlace       = @BirthPlace,
    WHERE PersonId   = @PersonId
COMMIT TRAN TweedleDumb

ACID • Consistent
• The Transaction must start, and leave, 

the database in a Consistent state
• The Transaction must be Consistent
• Failed Consistent

Locked out, suspended until [ T3 ]

User 2
Person has a balance of $5,000 DR (overdrawn)
Person phones bank clerk
Checks that they still have Credit Rating A
Changes their address
BEGIN TRAN TweedleDumber
SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace
    FROM Person [HOLDLOCK]
    WHERE PersonId = @PersonId

Credit Manager

The same thing 
happens to me.  It 
slows everything 

down.

Sometimes the app 
hangs, and then it is so 
slow.  I have so much 

work to do.

Teller

User
3

User
1

The system is 
broken !  We can't 

work like this !

ACID • Atomic
• All changes to the database are performed as 

if they are a single operation
• The operation is all or nothing, indivisible
• The "transaction" is spread across the 

network, uncontrolled, not a single operation
• Failed Atomic

The Real "Pessimistic Locking"
1 The groupies label their MV-non-CC fantasy "optimistic", in the fervent hope that the 

label produces the effect (the maintenance of offline versions is definitely not optimistic)
2 They label the OLTP Method (which as evidenced, they do not understand), "pessimistic 

locking", as the perceived opposite of their "optimistic" label.  It is a Straw Man
3 However, because their "MVCC" fantasy has no Concurrency Control whatsoever, and 

thus it does not work until a multi-layered Lock Manager is added, and used 
(including manual locking), in reality, it is their anti-method that employs "pessimistic 
locking" (lock on retrieval, shown here), and it guarantees the consequent problems.

OLTP
• Typically uneducated developers and schizophrenics 

(Stonebraker cultists: denial of reality) lock the row upon 
retrieval: that guarantees a lock storm, and for uncontrolled 
durations

• That is fatal in an OLTP environment, thus it is prohibited
• The cure is worse than the disease, and imposed on all users
• Failed OLTP
• Insanity is not an alternative to sanity.

Unfortunately, the Lost Currency problem is only understood by novices when the naïve "solution" is examined, thus it is given here.  The above 
relies on the notion that the data has not changed between retrieval and update: since that is false, they 'ensure' that it does not change by locking it.



Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 6 of 7

Transaction Sanity
OLTP Database[ Bank Account ]

IDEF1X Notation

CreditRating
CreditRatingCode  CHAR(1)
Name              CHAR(30)

Defines

Restricts

Comprises

Limits

Transacts Against

Person

UpdatedDtm        DATETIME
CreatedDtm        DATETIME
BirthPlace        CHAR(30)
BirthDate         DATE     AK.4
Initial           CHAR(3)  AK.3
NameFirst         CHAR(30) AK.2

CreditRatingCode  CHAR(1)
NameLast          CHAR(30) AK.1

PersonId          INT

AccountType
AccountTypeCode   CHAR(1)
Name              CHAR(30)

TransactionType
TransTypeCode     CHAR(1)
Name              CHAR(30)

Account

CreatedDtm        DATETIME

Name              CHAR(30)
BalanceLastMonth  MONEY

AccountId         INT

UpdatedDtm        DATETIME

PersonId          INT

DateLastMonth     DATE

JournalEntry

CreatedUserId     DATETIME
CreatedDtm        DATETIME
Amount            MONEY
TransTypeCode     CHAR(1)
DateTime          DATETIME
AccountId         INT

StatementMonth

Account.UpdatedDtm

Person.CreatedDtm

JournaleEntry.CreatedDtm

Account.CreatedDtm

Person.UpdatedDtm

JournaleEntry.TransTypeCode

Account.DateLastMonth

JournaleEntry.Amount

JournaleEntry.Date

Account.BalanceLastMonth
Account.Name
AccountId

Person.BirthDate
Person.NameFirst

BalanceCurrent

Person.NameLast
PersonId

• A simplified model of a financial database, with enough structure to expose the issues discussed herein
• There are two components to Optimistic Locking

1 the first component is a Timestamp that identifies the currency of the row, here UpdatedDtm 
Datatype DATETIME, millisecond resolution
• it is required on all rows that are subject to Data Currency evaluation, eg. not JournalEntry rows 

because they cannot be changed
2 the second component is located in the transaction code (next page)

• Key (Fact) = Existence

• Key + TimeStamp = Data Currency
• TimeStamp of retrieval is irrelevant

• Key (Fact) = Existence

• Key + TimeStamp = Data Currency
• TimeStamp of retrieval is irrelevant

http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf


Derek Ignatius Asirvadem • 14 Aug 21 Copyright © 1993-2021 Software Gems Pty Ltd [90] Transaction Sanity • 7 of 7

Transaction Sanity
Optimistic Locking

Time
T1

T2

T3

T4

T5

User interaction, uncontrolled duration

SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace,
        @UpdatedDtm       = UpdatedDtm --[T0]
    FROM Person 
    WHERE PersonId = @PersonId

Person has a balance of $5,000 DR (overdrawn)
Person phones bank clerk
Checks that he still has Credit Rating A
Changes his address

Online Transaction Processing is a mindset, a set of rules for application development that recognises, and minimises, contention on shared 
resources.  Optimistic Locking is a Method that eliminates two major concurrency problems: Lost Currency; and Lost Update (explained, previous 
pages).  The solution to the two failed examples (previous pages) is given here.  (The OLTP context & Transaction template are explained separately.)

-- Execute
BEGIN TRAN PersonUpdate
SET TRANSACTION ISOLATION LEVEL 3
SELECT  1
    FROM Person
    WHERE PersonId   = @PersonId
    AND   UpdatedDtm = @UpdatedDtm --[T0]
IF @@ROWCOUNT != 1 
    BEGIN
    ROLLBACK TRAN PersonUpdate
    RETURN 20002
    END
UPDATE  Person SET
        CreditRatingCode = @CreditRatingCode,
        BirthPlace       = @BirthPlace,
        UpdatedDtm       = GETDATE() --[T3]
    WHERE PersonId   = @PersonId
    AND   UpdatedDtm = @UpdatedDtm
IF @@ROWCOUNT != 1 
    BEGIN
    ROLLBACK TRAN PersonUpdate
    RETURN 20001
    END
COMMIT TRAN PersonUpdate
RETURN 0

-- Validate
SET TRANSACTION ISOLATION LEVEL 1
SELECT  1
    FROM Person
    WHERE PersonId   = @PersonId
    AND   UpdatedDtm = @UpdatedDtm --[T0]
IF @@ROWCOUNT != 1 
    RETURN 20002

EXEC PersonUpdate_tr
@PersonId,
@UpdatedDtm, --[T0]
@CreditRatingCode = "D",
@BirthPlace = BirthpPlace

Succeeded, Credit Rating D

Controlled duration,
No locks held
Data Currency validated

Failed, due to @UpdatedDtm[T0] != UpdatedDtm[T3]

-- Validate
SET TRANSACTION ISOLATION LEVEL 1
SELECT  1
    FROM Person
    WHERE PersonId   = @PersonId
    AND   UpdatedDtm = @UpdatedDtm --[T0]
IF @@ROWCOUNT != 1 
    RETURN 20002

EXEC PersonUpdate_tr
@PersonId,
@UpdatedDtm, -- [T0]
@CreditRatingCode = CreditRatingCode,
@BirthPlace       = "Timbuktu"

Lost Update prevented

Likewise, Lost Currency prevented

User interaction, uncontrolled duration

Person has a Credit Rating A which allows $10,000 overdraft
Person fails to keep agreements re covering their overdraft
Credit Manager changes Credit Rating to D; $0 overdraft

User 1

SELECT  @CreditRatingCode = CreditRatingCode,
        @BirthPlace       = BirthPlace,
        @UpdatedDtm       = UpdatedDtm --[T0]
    FROM Person 
    WHERE PersonId = @PersonId

Error 20001, '%1!: Encountered error %2!.  %3!'
Error 20002, '%1!: Data in %2! has changed between initial data retrieval and transaction submission.'
Error 20004, '%1!: A transaction has been opened by the caller (but is declared NOT to be open).' 
Error 20005, '%1!: A transaction has NOT been opened by the caller (but is declared to be open).' 
Error 20006, '%1!: is an utility transaction, it must be called from within a open transaction.' 

Rejected, Credit Rating D

Person attempts to withdraw $2,000 at bank
User 3

-- Validate
SET TRANSACTION ISOLATION LEVEL 1
SELECT  1
    FROM Person  p,
         Account a 
    WHERE p.PersonId   = @PersonId
    AND   p.UpdatedDtm = @UpdatedDtm --[T3]
    AND   p.PersonId   = a.PersonId
    AND   a.AccountId  = @AccountId
IF @@ROWCOUNT != 1 
    RETURN 20002

EXEC Withdraw_tr
@PersonId,
@AccountId
@UpdatedDtm, --[T3] 
@Amount = -2000

-- Execute
BEGIN TRAN Withdraw
SET TRANSACTION ISOLATION LEVEL 3
SELECT  1
    FROM Person  p,
         Account a 
    WHERE p.PersonId   = @PersonId
    AND   p.UpdatedDtm = @UpdatedDtm --[T3]
    AND   p.PersonId   = a.PersonId
    AND   a.AccountId  = @AccountId
IF @@ROWCOUNT != 1 
    BEGIN
    ROLLBACK TRAN Withdraw
    RETURN 20002
    END
SELECT  @CreditRatingCode = CreditRatingCode,
        @Balance = BalanceLastMonth + (
        SELECT SUM(Amount)
            FROM JournalEntry
            WHERE AccountId = a.AccountId
            AND   DateTime >  a.DateLastMonth
            )
    FROM Person  p,
         Account a 
    WHERE p.PersonId   = @PersonId
    AND   p.UpdatedDtm = @UpdatedDtm --[T3]
    AND   p.PersonId   = a.PersonId
    AND   a.AccountId  = @AccountId
SET @AmountLimit = CASE @CreditRatingCode
    WHEN "A" THEN @Balance + 10000
    WHEN "B" THEN @Balance + 1000
    ELSE          @Balance
    END
IF @Amount <= @AmountLimit
    BEGIN
    INSERT JournalEntry VALUES (
        @AccountId,
        GETDATE(),
        CASE WHEN @Amount < 0 THEN "DR"
             ELSE "CR" END,
        @Amount,
        GETDATE(),
        SUSER_ID()
        )
    COMMIT TRAN Withdraw
    RETURN 0 -- Transaction Accepted
    END
ELSE
    BEGIN
    ROLLBACK TRAN Withdraw
    RETURN 1 -- Transaction Rejected
    END

-- Execute

Large Transaction
• This Method can be optimised further; storing the 

Timestamp and validating every row within a 
multiple-row transaction is not always necessary.

• The Timestamp of the top-most row in an hierarchy 
can be used to identify the status of the tree.  

• Here the Person.UpdatedDtm is used to indicate 
any change to the Person's Person; Account; or 
JournalEntry rows.

Controlled duration,
Locks held,
Rollback required,
Data Currency validated

Uncontrolled duration,
No locks held,
Data Currency set

ACID • Durable
• The Transaction must be 

Durable: it must survive
• The platform supplies 

system durability.
ACID • Atomic
• All changes to the database 

are performed as if they 
are a single operation

OLTP • Atomic, Controlled
• Contiguous code block
• No user interaction within 

a Transaction.

User 2

User
2

Gee, the 
system is 

busy today

User
3

Everything is 
so fast, and we never 

lose anything

Indicates change to Person tree


	Reality vs Academic Isolation
	OLTP Context vs MV-non-CC Isolation
	Example Database[ Bank Account ]
	Lost Update
	Lost Currency
	OLTP Database[ Bank Account ]
	Optimistic Locking

