
Extending the Database Relational Model
to Capture More Meaning

E. F. CODD

IBM Research Laboratory

During the last three or four years several investigators have been exploring “semantic models” for
formatted databases. The intent is to capture (in a more or less formal way) more of the meaning of
the data so that database design can become more systematic and the database system itself can
behave more intelligently. Two major thrusts are clear:

(I) the search for meaningful units that are as small as possible--atomic semantics;
(2) the search for meaningful units that are larger than the usual n-ary relation-molecular

semantics.

In this paper we propose extensions to the relational model to support certain atomic and molecular
semantics. These extensions represent a synthesis of many ideas from the published work in semantic
modeling plus the introduction of new rules for insertion, update, and deletion, as well as new algebraic
operators.

Key Words and Phrases: relation, relational database, relational model, relational schema, database,
data model, database schema, data semantics, semantic model, knowledge representation, knowledge
base, conceptual model, conceptual schema, entity model
CR Categories: 3.70, 3.73, 4.22, 4.29, 4.33, 4.34, 4.39

1. INTRODUCTION

The relational model for formatted databases [5] was conceived ten years ago,
primarily as a tool to free users from the frustrations of having to deal with the
clutter of storage representation details. This implementation independence
coupled with the power of the algebraic operators on n-ary relations and the open
questions concerning dependencies (functional, multivalued, and join) within and
between relations have stimulated research in database management (see [30]).
The relational model has also provided an architectural focus for the design of
databases and some general-purpose database management systems such as
MACAIMS [13], PRTV [38], RDMS(GM) [41], MAGNUM [19], INGRES [37],
QBE [46], and System R [Z].

During the last few years numerous investigations have been aimed at capturing

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
A version of this work was presented at the 1979 International Conference on Management of Data
(SIGMOD), Boston, Mass., May 30-June 1, 1979.
Author’s address: IBM Research Laboratory K01/282, 5600 Cottle Road, San Jose, CA 95193.
0 1979 ACM 0362~5915/79/1200-0397 $00.75

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979, Pages 397-434.

398 ’ E. F. Codd

(in a reasonably formaI way) more of the meaning of the data, while preserving
independence of implementation. This activity is sometimes called semantic data
modeling. Actually, the task of capturing the meaning of data is a never-ending
one. So the label “semantic” must not be interpreted in any absolute sense.
Moreover, database models developed earlier (and sometimes attacked as “syn-
tactic”) were not devoid of semantic features (take domains, keys, and functional
dependence, for example). The goal is nevertheless an extremely important one
because even small successes can bring understanding and order into the field of
database design. In addition, a meaning-oriented data model stored in a computer
should enable it to respond to queries and other transactions in a more intelligent
manner. Such a model could also be a more effective mediator between the
multiple external views employed by application programs and end users on the
one hand and the multiple internally stored representations on the other.

In recent papers on semantic data modeling there is a strong emphasis on
structural aspects, sometimes to the detriment of manipulative aspects. Structure
without corresponding operators or inferencing techniques is rather like anatomy
without physiology. Some investigations have retained clear links with the
relational model and have therefore benefited from inheriting the operators of
this model-just as the relational model retained clear links with predicate logic
and can therefore inherit its inferencing techniques.

With regard to meaning, two complementary quests are evident:

(1) What constitutes an atomic fact (atomic semantics)?
(2) What larger clusters of information constitute meaningful units (molecular

semantics)?

After a review of the relational model, we introduce a classification scheme for
entities, properties, and associations. We then discuss extensions to the relatioral
model to reflect this classification and to support such aspects of molecular
semantics as abstraction by generalization and by Cartesian aggregation. The
extended model is intended primarily for database designers and sophisticated
users.

2. THE RELATIONAL MODEL

We shall now give a brief definition of the relational model, in which we emphasize
that the algebraic operators are just as much a part of the model as are the
structures. The operators permit, among other things, precise discussion of
alternative schemata (both base and view) for particular applications of the
relational model. We shall also point out the close relationship that exists between
the relational model and first-order predicate logic (although it is incorrect to
equate the two as in [43]).

I.,
.&

To help distinguish relational systems from nonrelational ones, we suggest the
following definitions. A database system is fully relational if it supports:

(1) the structural aspects of the relational model;
(2) the insert-update-delete rules;
(3) a data sublanguage at least as powerful as the relational algebra, even if all

facilities the language may have for iterative loops and recursion were
deleted from that language.

ACM Transactvxx on Database Systems, Vol. 4. No. 4, December 1979.

.

Extending the Database Relational Model - 399

A database system that supports (1) and (2), but not (3) is semirelational. Note
that a fully relational system need not support the relational algebra in a literal
sense, but must support its power. Besides being a yardstick of power, the algebra
is intended to be a precise intellectual tool for treating such issues as model
design, view definition, and restructuring.

2.1 Structures

A domain is a set of values of similar type: for example, all possible part serial
numbers for a given inventory or all possible dates for the class of events being
recorded. A domain is simple if all of its values are atomic (nondecomposable by
the database management system).

Let D1, Dz, . . . , D, be n (n > 0) domains (not necessarily distinct). The
Cartesian product x{Di: i = 1,2, . . . , n> is the set of all n-tuples (tl, tz, . . . , tn)
such that ti E Di for alI i. A relation R is defined on these n domains if it is a
subset of this Cartesian product. Such a relation is said to be of degree n.

In place of the index set (1,2, . . . , n) we may use any unordered set, provided
we associate with each tuple component not only its domain, but also its distinct
index, which we shall henceforth call its attribute. Accordingly, the n distinct
attributes of a relation of degree n distinguish the n different uses of the domains
upon which that relation is defined (remember that the number of distinct
domains may be less than n). A tuple then becomes a set of pairs (A : u), where A
is an attribute and v is a value drawn from the domain of A, instead of a sequence
(Ul, UP, . . . , U”).

A relation then consists of a set of tuples, each tuple having the same set of
attributes. If the domains are all simple, such a relation has a tabular represen-
tation with the following properties.

(1) There is no duplication of rows (tuples).
(2) Row order is insignificant.
(3) Column (attribute) order is insignificant.
(4) AlI table entries are atomic values.

The notation R (A : a, B : b, C: c, . . .) is used to represent a time-varying relation
R having an attribute A taking values from a domain a, an attribute I3 taking
values from a domain b, etc. When, for expository reasons, the domains can be
ignored, such a relation will be represented as R (A, B, C, . . .) or even as R.
However, for correct interpretation of an expression (and especially an assignment
statement), the order in which attributes are cited may be crucial (see THETA-
JOIN below).

A relational database is a time-varying collection of data, all of which can be
accessed and updated as if they were organized as a collection of time-varying
tabular (nonhierarchic) relations of assorted degrees defined on a given set of
simple domains. Base relations are those which are defined independently of
other relations in the database in the sense that no base relation is completely
derivable (independently of time) from any other base relation(s). Derived
relations are those which can be completely derived from the base relations. It is
this kind of relation which is normally employed to provide users or application
programs with their own views of the database. The declared relations may
include derived relations as well as alI of the base relations. Later, when we have

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

400 - E. F. Codd

introduced certain additional concepts, we shall define semiderived relations, a
class which subsumes the derived relations.

If U is a collection of attributes of a relation, the U-component of a tuple t of
that relation is the set of (A: v) pairs obtained by deleting from t those pairs
having an attribute not in U.

Between tabular relations there are no structural links such as pointers.
Associations between relations are represented solely by values. These associa-
tions are exploited by high-level operators.

With each relation is associated a set of candidate keys. K is a candidate key
of relation R if it is a collection of attributes of R with the following time-
independent properties.

(1) No two rows of R have the same K-component.
(2) If any attribute is dropped from K, the uniqueness property (1) is lost.

For each base relation one candidate key is selected as the primary key. For a
given database, those domains upon which the simple (i.e., single-attribute)
primary keys are defined are called the primary domains of that database. Note
that not all component attributes of a compound (i.e., multiattribute) primary
key need be defined on primary domains. Primary domains are important for the
support of transactions such as “remove supplier 3 from the database,” in which
we wish to remove 3 wherever it occurs as a supplier serial number, but not in
any of its other uses.

All insertions into, updates of, and deletions from base relations are constrained
by the following two rules.

Rule 1 (entity integrity): No primary key value of a base relation is allowed to
be null or to have a null component.

Rule 2 (referential integrity): Suppose an attribute A of a compound (i.e.,
multiattribute) primary key of a relation R is defined on a primary domain D.
Then, at alI times, for each value v of A in R there must exist a base relation (say
S) with a simple primary key (say B) such that v occurs as a value of B in S.

The relational model consists of

(1) a collection of time-varying tabular relations (with the properties cited
above-note especially the keys and domains);

(2) the insert-update-delete rules (Rules 1 and 2 cited above);
(3) the relational algebra described in Sections 2.2 and 2.3 below.

Closely associated with the relational model are various decomposition con-
cepts which are semantic in nature (being time-invariant properties of time-
varying relations). Examples of such concepts are nonloss (natural) joins and
functional dependencies [6], multivalued dependencies [lo, 441, and normal forms.
For details see [3] which provides a tutorial on the subject; see also [39].

2.2 Relational Algebra (Excluding Null Values)

Since relations are sets, the usual set operators such as UNION, INTERSEC-
TION, and SET DIFFERENCE are applicable. However, they are constrained
to apply only to pairs of union-compatible relations, i.e., relations whose attributes
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model - 401

are in a one-to-one correspondence such that corresponding attributes are defined
on the same domain. This constraint guarantees that the result is a relation.
CARTESIAN PRODUCT is applicable without constraint.

We now define operators specifically for the manipulation of n-ary relations. In
what follows R, S denote relations; A, B,, Bz, C denote collections of attributes;
c is a tuple of appropriate degree, and with appropriate domains.

THETA-SELECT (sometimes called RESTRICT)

Let 6 be one of the binary relations <, 5, =, 2, >, # that is applicable to
attribute(s) A and tuple c. Then R[A B c] is the set of tuples of R, each of whose
A-components bears relation 8 to tuple c. Instead of tuple c, other attribute(s) B
of R may be cited, provided that A, B are defined on common domains. Then
R [A B B] is the set of tuples of R, each of which satisfies the condition that its A-
component bear relation fl to its B-component. When 19 is equality (a very
common case), the THETA-SELECT operator is simply called SELECT.

Examples of THETA-SELECT

R(A B C) R[A #r] (A B C)
P 1 2 P 12
P 2 1 P 2 1
9 1 2 4 1 2
r 2 5
r 2 3

R[B>C] (A B C)
P 2 1

R[A = r] (A B C)

r 2 5
r 2 3

PROJECTION

R[AI, AZ, . . . , A,] is the relation obtained by dropping all columns of R except
those specified by Al, AZ, . . . , A,, and then dropping redundant duplicate rows.

Examples of PROJECTION

R(A B C) NABI (A B)
P 1 2 P 1
P 2 1 P 2
9 1 2 9 1
r 2 5 r 2
r 2 3

WC Cl (B C 1
R[Bl (B)

1
1 2 2
2 1
2 5
2 3

We can now define the third class of relations. Semiderived relations are those
which have a projection (with at least one attribute) that is a derived relation
(see weak redundancy in [5]). For example, if R (A, B) is a base relation and
S(A, C) is a relation such that

S[A] = (R[B = b])[A]

and attribute C is defined on a domain not used in any of the base relations
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

402 - E. F. Codd

(hence S is not derivable), then S is semiderived. As we shall see, there are many
uses for semiderived relations. Note that there is no stipulation that a relational
database will be designed to have minimal redundancy, although this is an option
that may be chosen. Thus, the declared relations may include semiderived and
even derived relations as well as the base relations.

THETA-JOIN

Given relations R (A, B,) and S(Bz, C) with B,, Bz defined on a common domain,
let 8 be one of the binary relations =, <, 5, I, >, # that is applicable to the
domain of attributes B1, Bz. The theta-join of R on BI with S on B:! is denoted by
RIBI 6 Bz]S. It is the concatenation of rows of R with rows of S whenever the
Bl-component of the R-row bears relation 8 to the Bz-component of the S-row.
When B is equality, the operator is called EQUI-JOIN. Of all the THETA-JOINS,
only EQUI-JOIN yields a result that necessarily contains two identical columns
(one derived from B1, the other from Bz). More generally, 8 may be permitted to
be any binary relation that is applicable to the domain of B1 and Bz.

Examples of THETA-JOIN

R(A B C) S(D E)
P 1 2 2 u
P 2 1 3 v
Q 1 2 4 u
r 2 5
r 3 3

R[C=D]S(A B C D E)
p 1 2 2 u
q 1 2 2 u
r 3 3 3 v

R[C>D]S(A B C D E)
r 3 3 2 u
r 2 5 2 u
r 2 5 3 v
r 2 5 4 u

If the relations being theta-joined have some attribute names in common, the
names for the attributes of the resulting relation must be specified. For example,
if each of the relations R, S has attributes A, B, and all four attributes are defined
on a common domain, we may define several possible theta-joins of R with S.
One such definition is:

T(D, E, F, G) = R(A, B)[B > B]S(A, B)

and, using an order-of-citation convention, this means that the source of values
for attribute D in T is attribute A in R. Similarly, for attributes E, F, G in T, the
respective sources are attributes B in R, A in S, and B in S.

NATURAL JOIN

This join is the same as EQUI-JOIN except that redundant columns generated
by the join are removed. Natural join is the one used in normalizing a collection
of relations.
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model - 403

Example of NATURAL JOIN. Relations R, S are those tabulated above.

DIVIDE

R[C*D]S (A B C E)
p 1 2 u
q 1 2 u
r 3 3 v

Given relations R(A, &) and S(&) with & and B2 defined on the same do-
main(s), then, RIBI + B2]S is the maximal subset of R[A] such that its Cartesian
product with S[B2] is included in R. This operator is the algebraic counter-part of
the universal quantifier.

Example of DIVIDE
R(A B) S(C)

P 1 1
P 2 3
P 3
Q 1
r 1
r 3

R[B + C]S (A)
P
r

2.3 Extensions of the Algebra for Null Values

The two most important types of null value have the meanings “value at present
unknown” and “property inapplicable.” An approach that handles both types of
nulls is described in [40]. A rather general attack on the problem of dealing with
partial information is described in [22]. Here, we shall concern ourselves with
only the “value at present unknown” type of null and denote it by w (see [5] for
more details). The following treatm,ent should be regarded as preliminary and in
need of further research.

In the basic relational model nulls are excluded from every component of a
primary key of a base relation. Apart from this constraint, any occurrence of the
value-unknown type of null can be replaced in an updating operation by a nonnull
value, and vice versa, unless there is an explicit integrity constraint disallowing
this.

The first question which arises is: what is the truth value of x = y if x or y or
both are null? An appropriate result in each of these cases is the unknown truth
value, rather than true or false. Accordingly, we adopt a three-valued logic for
use in extracting data from databases that may contain null values. We use the
same symbol “ti” to denote the unknown truth value, because truth values can be
stored in databases and we want the treatment of all unknown or null values to
be uniform. The three-valued logic is based upon the following truth tables:

;
F w w T
F w T ; ;I;T

NOT(F) = T; NOT(w) = w; NOT(T) = F
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

404 * E. F. Codd

The existential and universal quantifiers behave like iterated OR and AND,
respectively.

With regard to set membership E and set inclusion C, we assign the truth value
w to the expressions: w E S and {w} c S, whenever S is a nonempty unary relation
(even if S does contain a null value). This may seem a bit counterintuitive at
first, but one way to make it seem more acceptable is to think of each occurrence
of w as a placeholder for a possibly distinct value. To be more precise, a truth-
valued expression has the value w if and only if (after replacing any defined
variables by their defining expressions in terms of individual variables) both of
the following conditions hold.

(1) Each occurrence of w in the expression can be replaced by a nonnull -value
(possibly a distinct one for every occurrence) so as to yield the value T for
the expression.

(2) Each occurrence of w in the expression can be replaced by a nonnull value
(possibly a distinct one for every occurrence) so as to yield the value F for
the expression.

We shall call this the null substitution principle. The three-valued logic
described above is consistent with this principle. The following examples illustrate
the application of this principle to set membership and set inclusion. Let 0 denote
the empty set and R, S, T, U, V denote the following relations:

R s T u V
W W w 1 x w x w
1 1 Y w w 3 Y 3

2 z 1

The following expressions have the truth value F:

WE0 TcS VGU UC R.

The following expressions have the truth value w:

RcS ScR TCU UC T.
TcV ucv

In passing, we note that this scheme for nulls has certain properties which may
appear paradoxical at first. For example, take the relation EMP with attributes
NAME and AGE. The expression

(EMP[AGE 5 501 U EMP[AGE > 50])[NAME]

does not necessarily yield the set of all employee names. If, however, we interpret
the term EMP[AGE 5 501 as the set of tuples in EMP whose AGE-component
is known in the database to be less than or equal to 50, and EMP[AGE > 501 as
the set whose AGE-component is known to be greater than 50, the paradoxical
aspect disappears. This kind of interpretation does not require that all of the
tautologies of two-valued logic be preserved by the three-valued logic (contrast
with [40]).
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model - 405

By applying the null substitution principle to inequality testing, we can avoid
the arbitrary step of giving w any place in a numerical or lexicographic ordering.
In accordance with this principle, we assign the truth value w to the expressions
x 19 y, where 8 is any one of <, I, 2, > whenever x or y is null.

-For every positive integer n, the n-tuple consisting of n null values (each of
course accompanied by its attribute) is a legal tuple, but a nonbase nary relation
may contain at most one such tuple, and a base relation cannot contain such a
tuple at all. As usual, no relation may contain duplicate tuples. In applying this
nonduplication rule, a null value in one tuple is regarded as the same as a null
value in another. This identification of one null value with another may appear
to be in contradiction with our assignment of truth value to the test w = w.
However, tuple identification for duplicate removal is an operation at a lower
level of detail than equality testing in the evaluation of retrieval conditions.
Hence, it is possible to adopt a different rule. The consequences for UNION,
INTERSECTION, and DIFFERENCE are illustrated below.

R s RUS RnS R-S
w w w w w w w w
u w u w u w u w
u 1 u 1 u 1 u 1
w 1 w 1 w 1

Now, let us look at the effect of this type of null upon the remaining operators
of the relational algebra. CARTESIAN PRODUCT remains unaffected. PRO-
JECTION behaves as expected, provided that one remembers how the nondu-
plication rule is applied to tuples with null-valued components. The following
examples illustrate projection.

R RIB, Cl MCI
ABC B. C c
u w w w W W

u 1 w 1 w
wwl w 1 1
x 1 w
Y w 1

The THETA-JOIN operator entails concatenation of pairs of tuples subject to
some specified condition 8 holding between certain components of these tuples.
The evaluation of the condition for any candidate pair of tuples yields the truth
value F or w or T. We retain the join operator that concatenates only those pairs
of tuples for which the condition evaluates to T and call it a TRUE THETA
JOIN. In addition, we introduce a MAYBE THETA JOIN that concatenates
only those pairs of tuples for which the specified condition evaluates to w.

The MAYBE version of an operator is denoted by placing the symbol w after
the theta symbol (e.g., =w) or operator symbol (e.g., +w). The following examples
illustrate the TRUE and MAYBE EQUI-JOINS and the TRUE and MAYBE
LESS-THAN JOINS.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

406 - E. F. Codd

R s
AB c
u w
w 2 2”
w 1

If we wish to select only those rows of R that have w as their B-component, we
may form the MAYBE EQUI-JOIN of R with a relation T whose only element
is a single nonnull value (any such value will do, provided it is drawn from the
same underlying domain that attribute B is defined on) and then PROJECT the
result on A, B. In the case above, the reader can verify that the final result is a
relation whose only element is the pair (A : u, B: w). Treatment of null values by
the THETA-SELECT operator (TRUE and MAYBE versions) follows the same
pattern as the THETA-JOIN operators.

DIVISION is treated in a similar manner. The original operator based upon
true inclusion (inclusion testing that yields T) is retained and called TRUE
DIVISION. A new division operator +w is introduced which entails only maybe
inclusion (inclusion testing that yields w), and this is called MAYBE DIVISION.
The following examples illustrate the two kinds of division.

R S T
AB C C

-
-

u 1 2 -5
u 2 3 W

u 3
w 2
w w
z 3

R[B + wC]S -----I A

W I
1

The following operator permits two relations to be subjected to union, even if
they are not union-compatible. Nevertheless, the result is always a relation.

OUTER UNION

Let R, S be relations which have attribute(s) B in common and no others. Let the
remaining attribute(s) of R be A, and those of S be C. Let

Rl(A,B,C) = R x (C:w)
&(A,B,C) = (A:w) x S

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model - 407

where x denotes Cartesian product. The outer union of R and S is given by

R @ S = RI u S,.

Note that in the special case that R and S are union-compatible,

ROS=RUS.

Example of OUTER UNION

R(A B Cl S(B D)
P 1 2 2 u

P 2 1 3 v

9 1 2

ROS(A B C D)
p 1 2 0
p 2 1 0
q 1 2 w
w 2 w u
w 3 w v

In a similar manner, we could define OUTER versions of INTERSECTION
and DIFFERENCE also.

Both the NATURAL and EQUI-JOINS lose information when the relations
being joined do not have equal projections on the join attributes. To preserve
information regardless of the equality of these projections, we need joins that can
generate nulI values whenever necessary. Such joins were proposed independently
in [16, 20, 23, 441.

OUTER THETA-JOIN

Given relations R = R(A, B1) and S = S(B2, C) with B1, BP defined on a common
domain, let

T = R[B, 6’ BQ]S

R, = R - T[A, Bl]

S, = S - T[Bz, C].

Then the outer theta-join is defined by

RIBI @ B2]S = T U (RI x (Bs:w, C:w)) U ((A:w, B1:w) x &)
.

where U denotes union and x denotes Cartesian product.
Example of OUTER EQUI-JOIN

S (S# SCITY) J (J# JCITY)
sl c4 jl cl
s2 c2 j2 c2
s4 cl j3 c2
s6 cl j4 c5
s7 c3

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

408 - E. F. Codd

Define SJ = S[SCITY @ JCITY] J

SJ (S# SCITY JCITY J#)
Sl c4 w w
s2 c2 c2 8
s2 c2 c2 P
s4 Cl Cl jl
s6 Cl Cl jl
s7 c3 W W

W W c5 j4

OUTER NATURAL JOIN

Given relations R(A, Bi) and S(B2, C) as before, and relations T, RI, S1 defined
as above with = replacing theta, then the outer natural join of R on B1 with S on
Bz is defined by

R[Bl @ Bz]S = T[A, B1, C] U (RI x (C:w)) u ((A:w) x &).

Example of OUTER NATURAL JOIN. Define T(S#, CITY, J#) = S[SCITY
@ JCITY] J where relations S, J are as tabulated above.

T (S# CITY J#)
Sl c4 w
s2 c2 j2

s2 c2 j3
s4 cl jl
s6 cl jl
s7 c3 w
W c5 j4

In this treatment, if an operator generates one or more nulls, these nulls are
always of the type “value at present unknown,” which is consistent with the open
world interpretation (see Section 3). If we were dealing with relations having a
closed world interpretation, the “property inapplicable” type would be more
appropriate.

3. RELATIONSHIP TO PREDICATE LOGIC

We now describe two distinct ways in which the relational model can be related
to predicate logic. Suppose we think of a database initially as a set of formulas in
first-order predicate logic. Further, each formula has no free variables and is in
as atomic a form as possible (e.g, A & B would be replaced by the component
formulas A, B). Now suppose that most of the formulas are simple assertions of
the form Pub . - . z (where P is a predicate and a, b, . . . , z are constants), and
that the number of distinct predicates in the database is few compared with the
number of simple assertions. Such a database is usually called formatted, because
the major part of it lends itself to rather regular structuring. One obvious way is
to factor out the predicate common to a set of simple assertions and then treat
the set as an instance of an n-ary relation and the predicate as the name of the
relation. A database so structured will then consist of two parts: a regular part
consisting of a collection of time-varying relations of assorted degree (this is
ACM Transactions on Database Systems, Vol. 4, NO. 4, December 1979.

Extending the Database Relational Model 409

sometimes called the extension) and an irregular part consisting of predicate logic
formulas that are relatively stable over time (this is sometimes called the
intension, although it may not be what the logicians Russell and Whitehead
originally intended by this word). One may also view the intension as a set of
integrity constraints (i.e., conditions that define all of the allowable extensions)
and thus decouple these notions from variability with time.

One may choose to interpret the absence of an admissible tuple from a base
relation as a statement that the truth value of the corresponding atomic formula
is (1) unknown; (2) false. If (1) is adopted, we have the open worM interpretation.
If (2) is adopted, we have the closed world interpretation (see [28]). Although
the closed world interpretation is usually the one adopted for commercial data-
bases, there is a case for permitting some relations (e.g., P-relations of Section 7)
to have the open world interpretation, while others (e.g., E-relations for kernel
entity types to be discussed in Sections 5 and 6) have the closed world interpre-
tation.

Whether the open or closed interpretation is adopted, the relational model is
closely related to predicate logic. It is this closeness which accounts for the
plethora of relational data sublanguages that are based on predicate logic. For a
probing and thorough comparison of such languages, see [20,27].

Undisciplined application of predicate logic in designing a database could yield
an incomprehensible and unmanageable set of assertions. Some issues which arise
when attempting to introduce discipline are the following.

(1) Can we be more precise about what constitutes a simple assertion?
(2) What other regularities can be exploited in a formatted database?
(3) To what extent can these additional regularities be represented in readily

analyzable data structures as opposed to procedures?

In attempting to provide an answer to these questions, we shall employ popular
informal terms like “entity, ” “property,” and “association” to motivate extensions
to the relational model. Eventually, we arrive at a formal system called RM/T
(T for Tasmania, where these ideas were first presented [9]). This system can be
interpreted in many different ways. Certain interpretations should satisfy the so-
called 2-concept school in semantic modeling, while others should satisfy the 3-
concept school (see [25, p. 271).

4. DESIGNATION OF ENTITIES

The need for unique and permanent identifiers for database entities such as
employees, suppliers, parts, etc., is clear. User-defined and user-controlled pri-
mary keys in the relational model were originally intended for this purpose. There
are three difficulites in employing user-controlled keys as permanent surrogates
for entities.

(1) The actual values of user-controlled keys are determined by users and must
therefore be subject to change by them (e.g., if two companies merge, the
two employee databases might be combined with the result that some or all
of the serial numbers might be changed).

(2) Two relations may have user-controlled keys defined on distinct domains
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

410 - E. F. Codd

(e.g., one uses social security, while the other uses employee serial number)
and yet the entities denoted are the same.

(3) It may be necessary to carry information about an entity either before it has
been assigned a user-controlled key value or after it has ceased to have one
(e.g., an applicant for a job and a retiree).

These difficulties have the important consequence that an equi-join on common
key values may not yield the same result as a join on common entities. A
solution-proposed in part in [4] and more fully in [14]-is to introduce entity
domains which contain system-assigned surrogates. Database users may cause
the system to generate or delete a surrogate, but they have no control over its
value, nor is its value ever displayed to them.

Surrogates behave as if each entity (regardless of type) has its own permanent
surrogate, unique within the entire database. Actually, under the covers, such
surrogates may have to be changed (e.g., when two previously independent
databases are combined into one), but the following property is preserved at all
times: Two surrogates are equal in the relational model if and only if they denote
the same entity in the perceived world of entities. Note that the system would
create distinct surrogates for two entities as a result of user input that, in effect,
asserts the distinctness of these entities. A special coalescing command enables
a user to tell the system that two objects that were previously asserted to be
distinct, are, in fact, one and the same.

In any RM/T database one of the underlying domains serves as the source of
all surrogates; this is called the E-domain. Any attribute defined on the E-domain
is called an E-attribute. For easy recognition of such attributes, we adopt the
convention that they are given names ending in the special character “e.”

Introduction of the E-domain, E-attributes, and surrogates does not make user-
controlled keys obsolete. Users will often need entity identifiers (such as part
serial numbers) that are totally under their control, although they are no longer
compelled to invent a user-controlled key if they do not wish to.

They will have to remember, however, that it is now the surrogate that is the
primary key and provides truly permanent identification of each entity. The
capability of making equi-joins on surrogates implies that users see the headings
of such columns but not the specific values in those columns.

5. ENTITY TYPES

Entities may, of course, have several types (e.g., a supplier may also be a
customer). When information regarding an entity is first entered into a database,
the input must specify at least one type for that entity-it need not specify
anything more unless it is of a type used to describe some other entity (in which
case the entity whose description is being augmented must also be specified). In
subsequent sections we shall deal with automatic inference of other applicable
types when these are inferable from the given one(s).

In any RM/T database there is a unary relation (called an E-relation) for each
entity type. As a matter of convention, the relation is given the same name as the
entity type which the relation represents, while its sole attribute is named by
appending the character “e” at the end of the relation name. Such an attribute is
also given additional names (aliases) if the corresponding entity type is a subtype
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 411

of other entity types. In such a case, there is one alias for each superentity type,
and this alias consists of the relname of the supertype followed by the character
“e.”

The main purpose of an E-relation is to list all the surrogates of entities that
have that type and are currently recorded in the database. One reason for
establishing these E-relations explicitly is that an entity may change type dynam-
ically. A firm that was both a supplier and a customer may become just a supplier.
We shall see other reasons below.

The possibility that an entity may change its type or types means that we must
distinguish two purposes for removal of an entity surrogate from an E-relation:

(1) complete removal of the entity from the database, which means deleting
tuples wherever its surrogate appears in a unique tuple identifier role and
replacing all other occurrences by a special surrogate E-null that means
“entity unknown” [26];

(2) dynamic loss of one type for an entity accompanied by the survival of some
other type for that same entity, which means removal of its surrogate from
the E-relation for that type and from E-relations for certain other types
implied by the type being lost but not implied by the types being retained-
this will become clearer later-plus corresponding tuple deletions and sur-
rogate replacements as in (l), but excluding those that are associated with
the entity in its remaining types.

Rule 3 (entity integrity in RM/T): In conformity with the ground rules for
surrogates, E-relations accept insertions and deletions, but not updates. In con-
formity with Rule 1 for the basic relational model, E-relations do not accept null
values.

6. CLASSIFICATION OF ENTITIES AND ASSOCIATIONS

Entities and their types can be classified by whether they

(1) fill a subordinate role in describing entities of some other type, in which case
they are called characteristic;

(2) fill a superordinate role in interrelating entities of other types, in which case
they are called associative;

(3) fill neither of the above roles, in which case they are called kernel.

Entities and their types may be related to one another by criteria other than
description and association used above. Entity type el is said to be a subtype of
entity type e2 if all entities of type el are necessarily entities of type e2. For
example, in a database dealing with employees in general and salesmen employees
in particular, the entity type salesman would be a subtype of the entity type
employee. Any entity type (characteristic, kernel, or associative) may have one
or more subtypes, which in turn may also have subtypes. A subtype of a
characteristic entity type is also characteristic; a subtype of a kernel entity type
is also kernel; and a subtype of an associative entity type is also associative.

Those kernel entity types that are not subtypes of any other entity type are
called inner kernel. Each inner kernel entity type is defined independently of all
other entity types. Barring any integrity constraints that are specialized to a
particular database (as opposed to integrity constraints that are inherent in and

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

412 - E. F. Codd

n Kernel entity type

0 Associative entity type

Q Characteristic types for a given
kernel or associative entity type

Associative SubtvDes

ma
ml

Kernel Subtype

Fig. 1. Classification of entity types

a fundamental part of the data model itself), an inner kernel entity is not
existence dependent on any other entity of any type.

Objects which interrelate entities but do not themselves have the status of
entities will be called nonentity associations. The main distinction between
associative entities and nonentity associations is this: Associative entities, like
kernel entities, are allowed to have characteristic entities as well as immediate
properties, whereas nonentity associations are allowed to have immediate prop-
erties only. These and other differences discussed below stem from the difficulty
of specifying a cross reference to a particular association when it has no surrogate
identifying it uniquely. The prime reason for including nonentity associations in
RM/T is an expository one: to show how weak these associations are in contrast
to associative entities.

Figure 1 represents the classification of entity types in a simplified way (it does
not show that characteristic entity types may themselves have subtypes). Note
that the term inner associative entity type is applied to an associative entity type
that is not the subtype of any other entity type.

This classification scheme is similar in some respects, but certainly not identi-
cal, to classifications introduced in [32, 421. S&mid and Swenson included
nonentity associations in their scheme, but not associative entities-in RM/T
the former are dispensable, while the latter are indispensable.

7. ENTITIES AND THEIR IMMEDIATE PROPERTIES

We have seen that the E-relation for a given entity type asserts the existence of
those entities having that type. The immediate (single-valued) properties of an
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 413

entity type are represented as distinctly named attributes of one or more property-
defining relations, called P-relations. Each P-relation has as its primary key an
E-attribute whose main function is to tie the properties of each entity to the
assertion of its existence in the E-relation. Each surrogate appearing in this
E-attribute uniquely identifies the entity being described. Furthermore, it
uniquely identifies the tuple of which it is part because the properties are single
valued. The naming of attributes of P-relations conforms to the following con-
vention: For any entity type e and any pair of P-relations for e, the only attributes
these relations have in common are their primary keys.

The role of this E-attribute is that of a unique identifier for the relation in
which it appears. We shall call this role the K-role. Accordingly, each P-relation
has exactly one E-attribute that has the K-role. Such a relation may have one or
more other E-attributes, but their roles are purely referential, i.e., that of a
foreign key rather than a primary key.

Insertions into P-relations and deletions from E-relations are governed by the
following rule.

Rule 4 (property integrity): A tuple t may not appear in a P-relation unless the
corresponding E-relation asserts the existence of the entity which t describes. In
other words, the surrogate primary key component of t must occur in the
corresponding E-relation.

There has been much debate about whether the immediate properties of an
entity should be represented together in one property-defining relation (one
extreme) or split into as many binary relations as there are properties to be
recorded (the other extreme). The first is in accord with the PJ/NF [111 discipline,
while the second conforms to the irreducible relation approach [12, 291. The
normal forms (other than 1NF) are not mandatory-they are merely guidelines
for database design. Both the original relational model and RM/T leave this
decision to the model user. RM/T (and to a lesser extent RM) provides operators
to convert from one form to the other.

In database definition one advantage of binary P-relations is that each corre-
sponding property has a relation name, an attribute name, and a domain name,
all of which can be exploited to mnemonic advantage. A second chimed advan-
tage for binary P-relations is that the addition of a new property type to the
database can be effected by mere addition of one more P-relation. However, in
RM/T this advantage is applicable no matter whether the properties are presently
organized into binary relations exclusively or n-ary relations of assorted degrees.

The reader is cautioned to avoid jumping to the conclusion that binary relations
are somehow superior to nary relations as a representational primitive. Even
with immediate properties, there are questionable decompositions. Figure 2 shows
one organization for the immediate properties of employees. In this and similar
examples we may wish to decompose property relations no further than minimal
meaningful units. Should, for example, the day, month, and year components of
a date be represented in separate binary P-relations? Should the street number,
street name, city, and state components of an address be so separated? Besides
using the notion of minimal meaningful unit, we may wish to adopt the criterion
of avoiding occurrences of the “property inapplicable” null value; this objective
can often be reached without binary atomization.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

414 * E. F. Codd

Employee Employee-Number Employee-Name

(E-Relation) (P-Relation) (P-Relation)

Employee-Address

Emp t No Street City State

(P-Relation)

Fig. 2. Entity and property relations

Even if the principal schema were based exclusively on binary relations (and
we shall return to this topic in a later section), there would still be a need to
apply n-ary joins to obtain higher degree relations in order to define views, study
view integration, and represent a broad class of queries. With RM/T we take the
position that one man’s minimal meaningful unit is not necessarily another’s.

Note that the appropriate join for defining a view that encapsulates some or all
of the immediate properties of an entity type in a single wary relation is the
OUTER NATURAL JOIN of all P-relations for this type on the E-attributes
with the K-role (see Example A in Section 15.4). This join is appropriate no
matter how fine or coarse the property decomposition is.

To explain how the P-relations for a given entity type are tied to the E-relation
for that type, we shall make use of the following RM/T objects and properties.
The relname of a relation is the character string representation of the name of
that relation. The relname of a (presumably transient) relation, to which an
assignment has not been made, is null. Every base relation has a nonnull relname.
Further, every derived relation which is cited on the left-hand side of an assign-
ment statement has a nonnull rehnune. The relname domain (abbreviated RN-
domain) is the domain of all relnames in the database.

Now we introduce the property graph relation (PG-relation) that indicates
which P-relations represent property types associated with which E-relation.

Both of the attributes of PG are defined on the RN-domain. One attribute is
named SUB to indicate its subordinate role, while the other is named SUP to
indicate its superior role. If m, n are, respectively, the names of a P-relation and
an E-relation, let the expressionsp(m), e(n) denote the property type represented
by that P-relation and the entity type denoted by that E-relation, respectively.
The pair (SUB:m, SUP:n) belongs to PG iff p(m) is a property type for entity
type e(n).

One may think of the collection of P-relations for a given E-relation as
constituting a property molecule type, which is bound together by tuples in the
PG-relation.

8. MULTIVALUED AND INDIRECT PROPERTIES OF ENTITIES

Entity types are so defined that each multivalued property of an entity p is cast
in the form of a characteristic entity q together with immediate properties for q.
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 415

Job

Job t

Salary

Salary C

Job-Employee Job-Date-Jobname

Salary-Job Salary-Date-Amount

Fig. 3. Characteristic relations

A characteristic entity may itself have one or more characteristic entities subor-
dinate to it. A familiar example is that of employees (a kernel entity type), each
of whom has a job history (characteristic entity type subordinate to employees)
whose immediate properties are date attained position and name of position. This
information is augmented by salary history (characteristic entity type subordinate
to job history) whose immediate properties are date of salary change and new
salary (see Figure 3).

The need for a characteristic entity type described above arises from a strictly
multivalued dependence (i.e., one that is not a functional dependence). Another
way in which a characteristic entity type may arise is from a transitive functional
dependence [6]. In this case an entity type e has an immediate property p, which
in turn has an immediate property q (e.g., a highway segment has one of several
types of surface material, which in turn has a porosity). An entity type that is
characteristic with respect to highway segments can be introduced to represent
the types of surface material on these segments. Porosity then becomes an
immediate property of this entity type.

The characteristic entity types that provide description of a given kernel entity
type form a strict hierarchy, which we call the characteristic tree. In this tree,
entity type p is the parent of entity type q if q is an immediate characteristic of
p (i.e., not a ch aracteristic of a characteristic of p). A kernel entity type may, of
course, have no characteristic entity types describing it. In this case its charac-
teristic tree is a single node, the kernel entity type itself.

To represent the collection of characteristic trees, we introduce the character-
istic graph relation (CG-relation), a binary relation whose two attributes are
defined on the RN-domain, one with the SUB role, the other with the SUP role
(as with the PG-relation). Its interpretation is as follows: The pair (SUB:m,
SUP:n) belongs to CG if entity type e(m) is immediately subordinate to entity
type e(n) in one of the characteristic hierarchies.

Insertion and deletion of characteristic entities are governed by the following
rule.

Rule 5 (characteristic integrity): A characteristic entity cannot exist in the
database unless the entity it describes most immediately is also in the database.

One may think of the collection of characteristic relations for a given E-relation
as constituting a characteristic molecule type, which is bound together by tuples
in the CG-relation.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

416 - E. F. Codd

9. ASSOCIATIONS

9.1 Associative Entities

The representation of associative entities in RM/T is the same as that of kernel
entities. Thus, there is an E-relation for each associative entity type and zero or
more P-relations. Figure 4 shows an example of an assignment association
between employees and projects, where each assignment is treated as an entity
and P-relations are used to record the employee and project surrogates plus the
start date of the assignment.

If a given associative entity type has subordinate characteristic entity types,
there will be corresponding tuples in the CG-relation to define the tree of these
types and there will be characteristic relations to support each of the character-
istic entity types involved.

Insertion, update, and deletion of associative entities are governed by the
following rule.

Rule 6 (association integrity): Unless there is an explicit integrity constraint to
the contrary, an associative entity can exist in the database (i.e., there is a
corresponding surrogate in the appropriate E-relation), even though one or more
entities participating in that association are unknown. In such a case the surrogate
E-null is used to indicate that a participating entity is unknown.

To force automatic deletion of an association when an entity participating in
that association is deleted, one may easily add the explicit constraint that the
corresponding attribute of an appropriate P-relation cannot accept a null value.
Such a constraint is part of the application of RM/T, rather than an integral part
of RM/T itself.

An associative entity type interrelates entities of other types (kernel or asso-
ciative or both). Let us refer to these other types as immediate participants in
the given associative entity type. To support the specification of which entity
types participate in which associative entity types, we introduce the association
graph relation (AG-relation), a binary relation just like the CG-relation except
for its interpretation: (SUB:m, SUP:n) belongs to AG, if the entity type e(m)
participates immediately in the definition of associative entity type e(n). Note
that the transitive closure of AG is a partial order, but not necessarily a tree or
collection of trees.

It is important to observe that when one association type has another associ-
ation type as a participant, proper use of surrogates in the higher level association
for referencing specific lower level participants can remove a potential source of
ambiguity (in the same way that proper use of user-controlled keys in the basic
relational model can remove such an ambiguity). To illustrate this ambiguity,
suppose we have two RM/T relations IS and CAN each having attributes Se

Assign-Date

Fig. 4. Associative entity

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model 417

(supplier surrogates), Pe (part surrogates), and Ce (city surrogates):

IS (Se:e Pe:e C!e:e)
CAN (Se:e Pe:e Ce:e)

where (s: e, p : e, c : e) belongs to IS if supplier s is supplying part p from city c; and
(s : e, p : e, c : e) belongs to CAN if supplier s can supply part p from city c.

Suppose also there is a need to represent a higher level association that relates
each IS pair (s, p) to the project(s) receiving parts with serial number p. Suppose
one were to establish an RM/T relation TO@?: e, Pe: e, Je: e), where the attribute
Je is defined on project surrogates. It is not clear from this declaration whether
the pairs (s, p) in TO are pairs from IS or pairs from CAN or just any arbitrary
pairs of supplier and part surrogates. A separate integrity constraint of the form

TO[Se, Pel ii IS[Se, Pel

helps to resolve this ambiguity at the type level, but not at the instance level.
This is because there may be two or more occurrences of the pair (s, p) in the IS
relation-say (s, p, cl) and (s, p, c2)-and it is then not clear whether an
occurrence of (s, p) in the TO relation is referring to (s, p, cl) or (s, p, ~2).

By use of associative entities in RM/T the ambiguity can be resolved both at
the type and instance level. We would have RM/T relations as follows:

IS (ISe:e Se:e Pe:e ce:ce ***)
CAN (CANe:e Se:e Pe:e ce:ce -**)

TO (TOIc:e ISc:e -..)

where the attribute I& in the relation TO refers to specific entities and hence
specific tuples in the IS relation.

One may think of the collection of entity types participating (immediately or
otherwise) in a given associative entity type as constituting an associative
molecule type, which is bound together by tuples in the AC-relation.

9.2 Nonentity Associations

A nonentity association type has no E-relation. There is no surrogate associated
with an association of this type. Hence, there is no dependable way (i.e., system-
controlled way) to refer to it in either the PG-relation or the AG-relation. For the
same reason, it cannot participate as a component in another association.

A nonentity association type is represented by a single n-ary relation whose
attributes include the E-attributes identifying the entity types participating in
the association together with the immediate properties (if any) of this association.
Figure 5 shows how the assignment of employees to projects might be treated as
a nonentity association type.

The insertion, update, and deletion behavior is governed by Rule 2 of the basic

Assignment

Fig. 5. Nonentity association

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

418 - E. F. Codd

relational model. Thus, a nonentity association may not exist in the database
unless the entities it interrelates are present therein.

9.3 Decomposition of Associations

Thoughts, including those that pertain to description of a database, do not arise
neatly decomposed into minimal meaningful units.

Given an association involving n (n > 2) participating entity types, a database
designer who has only binary relational tools to work with would very likely
immediately decompose such an association into n anchored binary relations
(each relating one participant to the entity domain for the association itself).
Suppose that, had he cast the association in n-ary form and studied its possible
nonloss decompositions, he could have found that the association is decomposable
into two or more relatively independent associations of lower degree, each of
which could then be separately decomposed (if desired) into binary relations. We
would then say that his immediate decomposition into binaries was premature.
We call this the premature binary decomposition trap. This trap is complemen-
tary to the connection trap in [5].

In attempting to arrive at minimal meaningful units, the designer would be
well advised to make use of all the theory of n-ary relations that has been built
up over the past decade. There are now such concepts as PJ/NF (otherwise
known as 5NF) [ll], irreducible relations, atomic decomposition [45], well-defined
relations [33], independent relations [29], and primitive relations [26], all of which
can be used as guidelines for decomposition. While all these concepts deal
primarily with projections that are invertible by nonloss natural joins, the last
two also take into account new interrelation integrity constraints that might be
needed if decomposition is taken too far or poor choices are made when two or
more decomposition options are available.

Note that, in general, a nonentity association cannot be split up (without
information loss) into anchored binary projections in the same way associative
entities can because there is no entity domain to rejoin the projections together.
For this and other reasons, RM/T may be applied to database design completely
avoiding the nonentity association concept altogether.

10. CARTESIAN AGGREGATION

An important dimension for forming larger meaningful units is that of Cartesian
aggregation. Smith and Smith [33] call it simply aggregation, but we wish to
distinguish it from other forms of aggregation such as statistical aggregation and
cover aggregation (discussed below). According to Smith and Smith, Cartesian
aggregation is an abstraction in which a relationship between objects is regarded
as a higher level object.

Cartesian aggregation in RM/T is broken down into three types:

(1) aggregation of simple properties yields an entity type (characteristic or
kernel or associative);

(2) aggregation of characteristic entities yields an entity type (characteristic or
kernel or associative);

(3) aggregation of any combination of kernel and associative entity types yields
either an associative entity type or a nonentity association type.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 419

? ?

/-- \
Project Building

Children Jobs

A.
/\

A Characteristic
Entity

Rank

1
Types

Salaries

Associative
Entity

Tws

Kernel
Entity
Types

Denotes Immediate Properties
>

Fig. 6. Cartesian aggregation

The first kind of Cartesian aggregation is supported in RM/T by the P-relations
together with the PG-relation; the second type by the characteristic relations
together with the CG-relation; and the third type by the kernel relations,
associative relations, and the AG-relation. Figure 6 provides an example of
Cartesian aggregation.

While RM/T can be applied with the Smith and Smith constraint that
abstraction by Cartesian aggregation must yield a concept namable by a simple
English noun, the model itself is not constrained in this way, since this constraint
is too imprecise.

11. GENERALIZATION

11 .l Unconditional Generalization

Another important dimension for forming larger meaningful units is that of
generalization. It has received a good deal of attention in the context of semantic
nets [18, 31, 351. Here we are concerned with it in the context of n-ary relations.
Smith and Smith [34] define generalization as an abstraction in which a set of
similar objects is regarded as a generic object. There are two aspects to this
notion: instantiation and subtype. Both are forms of specialization, and their
inverses are forms of generalization. The extensional counterpart of instantiation
is set membership, while that of subtype is set inclusion. As shown in Figure 7, to
obtain particular engineers from the generic object (or type) engineer, instantia-
tion must be applied. The types engineer, secretary, and trucker are each subtypes
of the type employee. An entity type e together with its immediate subtypes,

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

420 - E. F. Codd

Employee (Emp, ID, Name, Birthdate)

/

c c_

\

c

Engineer Secretary Trucker
(Emp, Degree) (Emp; Typing Speed) (Emp, Reg #, Lit #I

Individual Individual individual
Engineers Secretaries Truckers

Fig. 7. Unconditional generalization

their subtypes, and so on constitute the generalization hierarchy of e. This
hierarchy is yet another molecule type.

Why should we separate the members of a generalization hierarchy into
different entity types? We do this only if different kinds of facts are to be recorded
about different members of the hierarchy. If these types were not represented
separately, we would have a single large relation with many occurrences of the
special null value which means “value inapplicable.” Associated with a general-
ization hierarchy is the property inheritance rule: Given any subtype e, all of the
properties of its parent type(s) are applicable to e. For example, all of the
properties of employees in general are applicable to salesmen employees in
particular.

The E-relations introduced above take care of generalization by membership.
To handle generalization by inclusion, we introduce the unconditional gen
inclusion relation (UGI-relation), a ternary relation representing a labeled graph.
Two attributes of UGI are defined on the RN-domain (one with the SUB role,
the other with the SUP role), whiie the third attribute is defined on the category
label domain called PER. The triple (SUB:m, SUP:n, PER:p) belongs to UGI if
entity type e(m) is an immediate subtype of entity type e(n) per category p. In
other words, the E-relation whose name is represented by character string m is
constrained to be included (by reason of generalization per category p) in the
E-relation whose name is represented by the character string n. Note that UGI
contains only the immediate unconditional inclusion constraints that are associ-
ated with the semantic notion of generalization. Thus, if (SUB:m, SUP:n,
PER:p) and (SUB:n, SUP:K, PER:p) belong to UGI, (SUB:m, SUP:& PER:p)
does not.

The transitive closure of the UGI-relation represents a partial order of the
entity types, but not necessarily a collection of trees, since an entity type may be
generalized by inclusion into two or more entity types. For example, female
engineers might be generalized into engineers on the one hand and female
employees on the other.

Consider the family of entity types in some generalization hierarchy. Normally,
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model 421

it would be. good database design to represent common properties and character-
istics of these entity types as high up in that hierarchy as possible, taking full
advantage of the property inheritance rule. However, RM/T itself does not place
such a constaint upon generalization hierarchies-this is considered to be a design
discipline that the user of RM/T may choose to adopt or reject.

The following rule governs insertions and deletions of surrogates.

Rule 7 (subtype integrity): Whenever a surrogate (say s) belongs to the
E-relation for an entity of type e, s must also belong to the E-relation for each
entity type of which e is a subtype.

11.2 Alternative Generalization

We may augment the usual notion of generalization hierarchy by noting that an
entity type may be generalized into two or more alternative types. For example,
in a database concerning customers (see Figure 8), suppose that a customer may
be a company, partnership, or individual person and each of these is a legal unit.
Suppose also that different attributes are to be recorded for each of these five
entity types. Then, in addition to recording in UGI the unconditional inclusion of
customers, companies, partnerships, and individuals in legal units, we should also
record elsewhere the alternative or conditional inclusion of customers in compa-
nies, partnerships, and individuals. To support this, we introduce the alternative
gen inclusion relation (AGI-relation), a ternary relation just like the UGI-
relation, except for its interpretation: (SUB:m, SUP:n, PER:p) belongs to AGI
if the E-relation with name m is constrained to be conditionally included in
E-relation n by reason of generalization per category p.

Suppose information about a new entity is being inserted and just one of its
several types is specified. Then the system can (and, according to Rule 7, must)
automatically insert the surrogate generated for this entity not only in the
E-relation directly representing the declared type, but also in the E-relation for
every entity that, according to UGI and AGI, is superordinate to the declared
entity. Both graph relations must be consulted, because A may be alternatively
subordinate to B and C, which in turn are unconditionally subordinate to D;
hence A is unconditionally, but not immediately, subordinate to D.

To illustrate the operational distinction between UGI and AGI, consider the
introduction of a new customer into a database that conforms to Figure 8. By

Legal Unit

Company Partnership Individual

Fig. 8. Alternative generalization

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

422 * E. F. Codd

consulting UGI the system ascertains that the surrogate for this customer must
be entered into the E-relation for legal units as well as that for customers. By
consulting AGI it ascertains that more extensional information is needed to
determine whether to enter the surrogate into the E-relation for companies,
partnerships, or individuals. Until this information is forthcoming, the system
cannot determine whether the customer in question inherits properties from a
company, partnership, or individual. Accordingly, AGI (in contrast to UGI) alerts
the system to the need to obtain, if necessary, and consult extensional information
for guidance.

12. COVER AGGREGATION

A convoy of ships is certainly an aggregation of some kind. However, it is not an
abstraction by Cartesian aggregation, nor is it an abstraction by generalization
(after all, ships are neither instantiations nor subtypes of convoys). Hammer and
McLeod [15] include this kind of aggregation in their model, and we shall use
their example.

Consider a database that keeps track of properties of individual ships and
convoys. When information about a new ship is inserted, it is normally not known
in what convoys (if any) this ship will participate. Figure 9 should make the
distinctive aspects of this kind of aggregation clear. The couer type CONVOY
means that the database is keeping track of convoys in general. CONVOY
ALPHA is a particular convoy, one of several in existence at this time. SAUCY
SUE designates a ship that happens to be in CONVOY ALPHA. There is a
subconvoy of ALPHA to which SAUCY SUE also belongs. Note that the inclusion
of SUBCONVOY in CONVOY ALPHA is not an inclusion-based generalization
(SUBCONVOY is an extensionally, rather than intensionally, defined subset of
ALPHA). Moreover, the membership of SAUCY SUE in CONVOY ALPHA is
not a membership-based generalization (SAUCY SUE is not a particular convoy
or kind of convoy).

It happens in the convoy example that a ship cannot normally be a member of
two convoys at once. If we regard lone ships as singleton convoys, then the
CONVOY concept partitions the class of ships. The disjointness of convoys does
not carry over into all other examples of cover aggregation. Consider people and
clubs in place of ships and convoys: People can belong to many different clubs
simultaneously. So, in general, this type of aggregation constitutes a cover rather
than a partition-hence its name.

Convoy Alpha Ship
(Cover Member) (Entity type)

c-ewn

Alpha Subconvoy Saucy Sue
(Subset of cover member) E (Particular Ship)

Plane
(Entity Type)

Fig. 9. Cover aggregation and generalization

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 423

A typical cover member may or may not be homogeneous in type. For example,
a task force may consist of ships, planes, tanks, and personnel.

Each cover aggregation type is treated by RM/T as an entity type, having the
usual E-relation plus possible P-relations and possible subordinate characteristic
relations. For example, in the case of the CONVOY cover type, the E-relation
would list the surrogates for existing convoys, while the P-relations and any
characteristic relations would list properties of each convoy regarded as a single
generic object.

Although it is possible to treat each cover member as a distinct entity type,
this would normally be neither necessary nor desirable. Membership of individual
entities (ships) in a cover member (particular convoy) is represented by a graph
relation defined on the E-domain in the obvious way.

To enable the system to control the input of members of cover members, we
introduce the couer membersh& relation (KG-relation), a graph relation on the
RN-domain which specifies for every cover aggregation type what are the allow-
able types that may become members of cover members (e.g., are just ships
allowed as members of convoys or are planes allowed too?).

13. EVENTPRECEDENCE

Entities of event type are those which have as part of their description a time of
occurrence or a start time and/or a stop time. Note that not all entities with time
attributes are events. For example, an associative entity which indicates that
supplier x can supply item y with a delivery time of three months is not itself an
event.

Ordering of events in time plays a major role in certain databases. Provision
for recording this ordering at the type level represents a step toward supporting
scripts (see [17]).

Event el succeeds event e2 if the time of occurrence/start of el is strictly later
than the time of occurrence/completion of e2 (according to whether these events
are perceived as instantaneous or not). Some types of events are unconditionally
followed by one or more other event types. Such succession is normally a partial
order. It is represented in RM/T by the unconditional successor relation (US-
relation), a graph relation on the RN-domain. (SUB:m, SUP:n) belongs to this
relation if an event of type e(m) must be succeeded by an event of type e(n), and
there is no intermediate event type e such that e is an unconditional successor of
e(m) and e(n) is an unconditional successor of e.

Similarly, some types of events are alternative successors to others, and this
alternative succession is represented by the alternative successor relation (AS-
relation) in a similar manner to the unconditional succession.

When an event e2 succeeds an event e,, this obviously means that el is a
predecessor of e2, but it does not mean that el is necessarily the only predecessor
of e2-even if e2 is the only successor of el. Hence, we need two more graph
relations to describe precedence between event types: UP for unconditional
precedence and AP for alternative precedence.

To illustrate the use of these graph relations, suppose we have a database that
includes records of orders placed with suppliers and records of shipments that
have been accepted as input to the inventory (the corresponding event entity
types will be called orders and shipments). Suppose that we prohibit acceptance

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

424 - E. F. Codd

of shipments into the inventory unless there is an unfilled order covering the
items in question. Then, relation UP would have a tuple (SUB:orders,
SUP:shipments) that asserts that every acceptance of a shipment is uncondition-
ally preceded by an order. In addition, relation AS would have a tuple that asserts
that one possible successor event to the placing of an order is the acceptance of
a shipment (shipments can, of course, be rejected). This intensional information
can be used by the database system to challenge the validity of particular
acceptances not covered by corresponding orders.

More generally, the relations US, AS, UP, AP provide a means of constraining
insertions to and updates of the event relations supporting an event type.
Otherwise, their behavior under insertion, update, and deletion is determined by
whether they are kernel or associative.

14. RM/T CATALOG

RM/T contains its own extensible catalog to facilitate transformations between
different organizations of common information as may be encountered in the
process of view integration. The following relations constitute the catalog struc-
ture:

CATR (Re RELNAME RELTYPE)
CATRA (RAe Re Ae)

CATA (Ae ATTNAME USERKEY)
CATAD (AD@ Ae De)

CATD (De DOMNAME VTYPE ORDERING)
CATC (Ce PERNAME)

CATRC (RCL Re ce)

where CATR, CATA, and CATD describe the relations, attributes, and domains,
respectively; CATRA interrelates relations and their attributes; CATAD inter-
relates attributes and their domains; CATRC interrelates relations and categories
(see below for details). In addition, attributes Re, Ae, De, Ce are defined on the
E-domain and contain surrogates for entities of type relation, attribute, domain,
and category label, respectively; attributes RAe, ADe, RCe are also defined on
the E-domain and contain surrogates for associative entities of type relation-
attribute, attribute-domain, and relation-category-label, respectively. The re-
maining attributes are listed below with a brief explanation:

RELNAME
ATTNAME
DOMNAME
PERNAME
RELTYPE
USERKEY

VTYPE
ORDERING

relname of relation (defined on RN-domain);
attname of attribute;
domname of domain;
category label (defined on PER-domain);
type of object represented by relation;
indicates whether attribute participates in a user-defined key
for corresponding relation;
syntactic type of value;
indicates whether > is applicable between values in correspond-
ing domain.

Given a category c, an entity type is called top per c if it has at least one
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 425

subordinate entity type per c, but no superordinate per c. Relation CATRC
contains at least one tuple for every category. For each category in the database,
it lists the relations which represent top entity types per that category. The
meaning of the other relations in the catalog should be obvious.

Appropriate reltypes are specified for a relation by concatenating appropriate
letters from the following list:

A associative entity type relation;
C characteristic entity type relation;
E E-relation;
G graph relation;
I inner kernel entity type relation;
K kernel entity type relation;
L edge-labeled;
N nonentity association relation;
P property relation;
T event entity type relation.

For example, a relation representing a kernel event entity type would have
reltype TK; one that represents an edge-labeled digraph would have the reltype
LG.

15. OPERATORS FOR RM/T

The following operators are intended to permit both the schema information and
the database extension to be manipulated in a uniform way.

15.1 Name Operators

NOTE

Let R be a relation. NOTE(R) is the relname of R (i.e., the character string
representation of the name of R) provided R has been assigned such a name by
a user; else NOTE(R) is null. For our present purposes we do not need to extend
this operator to objects other than relations. Many relations generated as inter-
mediate results will not have relnames. Every base relation must, however, be
given a relname.

TAG

Let R be a relation. Then

TAG(R) = R x {NOTE(R)}

where x denotes Cartesian product.

DENOTE

Let r be the relname of a relation. Then DENOTE(r) is the relation denoted by
r. When applied to relations that have relnames, the operators NOTE and
DENOTE are inverses of one another.

DENOTE may also be applied to a unary relation that is a set of relnames. Let
R be such a relation. Then DENOTE(R) is the set of all those relations whose
relname is in R.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

426 - E. F. Codd

15.2 Set Operators

COMPRESS

Let f be an associative and commutative operator that maps a pair of relations
into a relation (for example, a join). Let 2 be a set of relations such that f can be
validly applied to every pair of relations in 2. Then COMPRESS(f, 2) is the
relation obtained by repeated pairwise application of f to the relations in 2. An
alternative notation for COMPRESS(f, 2) is f/Z.
APPLY

Let f be a unary operator that maps relations into relations, and 2 a set of
relations (not necessarily union compatible). Then APPLY(f, 2) yields the set of
all relations f(z) where z is a member of 2. For convenience, we adopt the
convention that if a set of relations is cited in an algebraic expression in one or
more places where a relation name would be syntactically valid, then the expres-
sion is evaluated for every member of the set. However, (1) the expression must
be enclosed in parentheses and preceded by the word APPLY, and (2) no more
than one set of relations may be cited within the scope of a single APPLY (any
number of individual relations may be cited).

PARTITION BY ATTRIBUTE: PATT

Let R be a relation with attribute A (possibly compound). R may have attributes
other than A. Then PATT(R, A) is the set of relations obtained by partitioning
R per all the distinct values of A. For all relations R having an attribute A:

R = UNION/PATT(R, A).

PARTITION BY TUPLE: PTUPLE

Let R be a relation. PTUPLE(R) is the set of relations obtained by promoting
each tuple of R into a single-tuple relation. Note that R = UNION/PTUPLE(R).

PARTITION BY RELATION: PREL

Let R be a relation. PREL(R) is the set of relations whose only member is the
relation R. Note that R = UNION/PREL(R).

SETREL

This operator takes as arguments any number of explicitly named relations and
yields a set of relations. An appropriate expression is:

SETREL(R1, Rs, . . . , R,).

15.3 Graph Operators

The following operators are included for convenient manipulation of the directed
graph relations (PG, CG, AG, UGI, AGI, US, AS, UP, AP, KG). Relation R is a
digraph relation if it is of degree at least two and has the following properties:
(1) two of its attributes are defined on a common domain; (2) one of these has the
SUB role, the other has the SUP role; (3) no other attributes have the SUB or
SUP role. Relation R is an edge-labeled digraph relation if (1) it is a digraph
relation of degree at least three; (2) exactly one of its attributes has the PER
(labeling) role; and (3) for every m, n, p no two tuples of R have (SUB:m,
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model 427

SUP:n, PER:p) in common. A digraph relation that is not edge-labeled is called
unlabeled.

OPEN

Case 1. Let R be an unlabeled digraph relation (i.e., no attribute has the PER
role). Then OPEN(R) yields a copy of R with all nonimmediate subordinations
removed; i.e., it is the maximal subset RI of R having the property that if
(SUB:m, SUP:n) belongs to RI, then either there does not exist any k for which
both (SUB:m, SUP:k) and (SUB:k, SUP:n) belong to RI, or else the existence
of such a k implies that k = m or k = n.

Case 2. Let R be an edge-labeled digraph relation. OPEN(R) yields the
maximal subset RI of R with the property that if (SUB:m, SUP:n, PER:p)
belongs to RI, then either there does not exist any k for which both (SUB:n,
SUP: 12, PER:p) and (SUB: k, SUP:n, PER:p) belong to RI, or else the existence
of such a k implies that k = m or k = n.

CLOSE

Case 1. Let R be an unlabeled digraph relation. CLOSE(R) is the transitive
closure of R; i.e., it is the minimal superset of R such that if both (SUB:m,
SUP:k) and (SUB:k, SUP:n) belong to R, then (SUB:m, SUP:4 belongs to
CLOSE(R). Tuples in CLOSE(R) that do not also belong to R have null values
for those attributes other than the SUB and SUP attributes.

Case 2. Let R be an edge-labeled diagraph relation. CLOSE(R) yields the
minimal superset of R such that if both (SUB:m, SUP:k, PER:p) and (SUB:k,
SUP:n, PER:p) belong to R, then (SUB:m, SUP:n, PER:& belongs to
CLOSE(R). Tuples in CLOSE(R) that do not also belong to R have null values
for those attributes other than the SUB, SUP, and PER attributes.

Note that for all digraph relations R:

OPEN(OPEN (R)) = OPEN(R),
OPEN(CLOSE(R)) = OPEN(R),

CLOSE(CLOSE(R)) = CLOSE(R),

while for all unlabeled digraph relations R of degree 2 and all edge-labeled digraph
relations R of degree 3:

CLOSE(OPEN(R)) = CLOSE(R).

With higher degree digraph relations, OPEN may lose information (contained in
attributes other than SUB, SUP, and PER) which CLOSE cannot regenerate.

STEP

Case 1. Let R be an unlabeled digraph relation that does not have an attribute
SEP (which stands for separation). Let 2 be the set of all attributes of R other
than SUB and SUP. STEP(R) is the set of all tuples of the form

(SUB:x, SUP:y, Z:z, SEP:n)

where (SUB:x, SUP:y, 2:~) belongs to R and n is the least number of edges of
the graph which separate node x from node y.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

428 - E. F. Codd

Case 2. Let R be an edge-labeled digraph relation that does not have an
attribute SEP. Let 2 be the set of all attributes of R other than SUB, SUP, and
PER. STEP(R) is the set of all tuples of the form

(SUB:x, SUP:y, PER:p, Z:z, SEP:n)

where (SUB:x, SUP:y, PER:p, 2:s) belongs to R and n is the least number of
edges with the label p separating node x from node y.

15.4 Examples

Example A. Combine all of the P-relations for the entity type employee into
a single comprehensive P-relation, without losing information and without assum-
ing any knowledge of the number of such relations.

First we obtain the names of all P-relations for the entity type employee.

R1 t PG[SUP = emp] [SUB].

Remember that PG is the property graph relation. Then we obtain the corre-
sponding set of relations:

Rz t DENOTE(RI).

Finally, we repeatedly apply the outer natural join @ on the attribute EMPe
(common to all relations in the set):

Ra + (0 EMPe)/Rz,

where @ followed by an attribute or collection of attributes indicates that the
outer natural join is to be performed with respect to these attributes as join
attributes.

Suppose we combine the expressions for RI, Rz, RB into a single expression and
replace emp by r, where r is the relname of any entity type. Let us denote the
result by:

PROPERTY(r) = (0 r, ‘e’)/DENOTE(PG[SUP = r] [SUB]).

PROPERTY accordingly maps a relname of an entity type into the corresponding
comprehensive P-relation.

Example B. Obtain the employee name and jobtype for all employees with an
excellent rating, assuming that:

(1) There are distinct entity types for each jobtype (e.g., secretary, trucker,
engineer, etc.) and the jobtype category partitions the set of employees.

(2) The immediate generalization of these types is to the entity type employee.
(3) Employee name and jobtype are recorded in one or more of the P-relations

associated with employee.
(4) Rating is recorded separately in a P-relation for each jobtype.

R 1 t UGI[SUP = emp, PER = jobtype] [SUB].

Remember that UGI is the unconditional gen inclusion relation. RI is therefore
a unary relation that lists all the names of all the E-relations that are uncondi-
tionally immediately subordinate to the employee relation.

RP t APPLY(PROPERTY, RI).
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model 429

Rz is a set of P-relations, each of which is the comprehensive P-relation for one
of the relnames in RI.

RS c APPLY(&[RATING = excellent]).

RB is a set of relations just like Rz except that each relation in RB is a restriction
of its counterpart in Rs.

Rq t APPLY (&[EMPe]).

R4 is a set of relations obtained by projecting each relation in Ra on the attribute
EMPe.

R5 t (PROPERTY(emp))[EMPe, NAME, JOBTYPE].

The comprehensive P-relation for the entity type employee is projected onto
its surrogate, name, and jobtype attributes.

Rs t UNION/APPLY(Rd[EMPc = EMPe]R,).

Each relation in the set Rd is joined by entity employee to relation Rs. The
result is compressed by repeated union to yield Rg, the required output.

The final expression is an example of a join by entity, in contrast to a join by
property.

Example C. A database contains information about employees. The properties
and characteristics pertinent to all employees are linked per PG and CG with the
entity type employee. In addition, employees are categorized by

(1) jobtype-engineer, secretary, technician, etc.;
(2) employment status-permanent and temporary.

Distinct sets of properties and characteristics are recorded for all these different
specializations. The generalization graph UGI shows the engineer, secretary,
technician, etc., entity types being subordinate to the employee entity type per
jobtype, and the permanent and temporary entity types subordinate to the
employee entity type per status.

Obtain a ternary relation R such that (E-domain:x, RN-domain:y, PER-
domain:z) belongs to R iff x is the surrogate of an employee, y is the entity type
of x per category Z. In effect, we are converting category information into a new
attribute of a relation at the parent level.

R, t UGI[SUP = emp] [SUB, PER].

Relation RI lists the names of all the relations that are immediate subordinates
of employee in the generalization graph.

Rs t DENOTE(Ri[SUB]).

R2 is the corresponding set of relations.

Rs t APPLY (TAG, Rz).

The set RS is obtained by taking each relation in RZ and appending to it a column
that contains as many occurrences of the relname for that relation as there are
tuples in the relation.

R.i c UNION/APPLY(R3[RN*SUB]RI).
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

430 * E. F. Codd

The natural join with relation RI is applied to each relation in Rs, using relname
attributes. The resulting set of relations is compressed by repeated application of
union to yield the desired relation.

Example D. Combine all of the information in the RM/T graph relations into
one relation R having attributes SUB, SUP, PER, and RN, where (SUB:m,
SUP:n, PER:p, RN:q) belongs to R iff

(1) q is the relname of a labeled graph relation and (SUB:m, SUP:n, PER:p)
belongs to q; or

(2) q is the relname of an unlabeled graph relation, p is null, and (SUB:m,
SUP:n) belongs to q.

Assume the reltype of graph relations is G. Make no assumption about the
number of graph relations in RM/T or their names.

R, t DENOTE(CATR [RELTYPE = G] [RN]),
Rz t APPLY(TAG, Rs),
R t 0 /Rz .

The outer union is needed in the last statement because not all graph relations in
RM/T have the same degree.

16. SUMMARY OF RM/T

Systematic use of entity domains (including avoidance of nonentity associations)
enables RM/T to support widely divergent viewpoints on atomic semantics,
ranging from the extreme position that the minimal meaningful unit is always a
binary relation to other more moderate positions. The four dimensions of molec-
ular semantics supported by RM/T are Cartesian aggregation, generalization,
cover aggregation, and event precedence (see Figure 10).

We now summarize the special objects and operators we have introduced in
extending the relational model. Table I lists the objects, while Table II lists the
algebraic operators. We use “att” and “rel” as abbreviations for “attribute” and
“relation,” respectively.

Sets of n-ary relations have been introduced as an additional type of object for
algebraic manipulation. The conventional set operators applicable to these higher

Cartesian
Aggregation

Event
Precedence

Aggregation

Fig. 10. Four dimensions of RM/T
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database kelational Model

Table I

* 431

RM/T
object Purpose

surrogate
relname
reltype
E-null
E-domain
PER-domain
RN-domain
E-att
RN-att
PER-att
SEP-att
SUB-att
SUP-att
CATR-rel
CATRA-rel
CATA-rel
CATAD-rel
CATD-rel
CATC-rel
CATRC-rel
E-rel
P-rel
PG-rel
CG-rel
AG-rel
UGI-rel
AGI-rel
US-rel
AS-rel
UP-rel
AP-rel
KG-rel

system-controlled entity representative
string rep of name of database relation
string rep of relation type

* surrogate denoting “entity unknown”
* domain of active surrogates
l domain of category labels
* domain of relnames

attribute defined on E-domain
attribute defined on RN-domain
label in graph relation
separation of one node from another
subordinate in graph relation
superior in graph relation

%* list of all relnames and their reltypes
%* relations and their attributes
%’ list of all attributes
%’ attributes and their domains
I* list of all domains
%* list of all categories
%* categories and their top entity types

list of surrogates for a given entity type
immediate properties of entity type

* property graph
* characteristic graph
* association graph
* unconditional gen inclusion graph
* alternative gen inclusion graph
l unconditional successor graph
* alternative successor graph
* unconditional predecessor graph
* alternative predecessor graph
* membership in cover aggregate types

Note: In any RM/T database there is only one object of each type
marked with an asterisk. The relations marked % have E-relation
counterparts not listed explicitly here.

Table II

RM/T
operator Domain object Range object

NOTE
TAG
DENOTE

relation
relation
relname
relnameset

relname
relation
relation
set of relations

COMPRESS
APPLY
PATT
PTUPLE
PREL
SETREL
OPEN
CLOSE
STEP

set of relations relation
set of relations set of relations
relation set of relations
relation set of relations
relation set of relations
relation(s) set of relations
graph relation graph relation
graph relation graph relation
graph relation graph relation

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

432 - E. F. Codd

order sets are UNION, INTERSECTION, and SET DIFFERENCE. Various
other operators (e.g., OUTER UNION) may be applied to them. To create these
sets of relations, manipulate them, and manipulate the graph relations, the
operators have been added (the terms “domain object” and “range object” refer
to the domain and range of the operator) where relname set means a unary
relation that is a set of relnames (see Table II).

17. CONCLUSION

We have attempted to define an extended relational model that captures more of
the meaning of the data. Meaningful units of information larger than the individ-
ual n-ary relation have been introduced in such a way that apparently competing
semantic approaches recorded elsewhere may all be represented therein or
translated thereto. The result is a model with a richer variety of objects than the
original relational model, additional insert-update-delete rules, and some addi-
tional operators that make the algebra more powerful (and unfortunately more
complicated). We reiterate that incorporation of larger meaningful units is a
never-ending task, and therefore this model is only slightly more semantic than
the previous one.

A data model that is to act as

(1) a conceptual framework for defining a wide class of formatted databases and
(2) a mediator between stored representations and user views

should probably have at least four personalities; a tabular personality (e.g., the
extensions of relations in the relational model), a set-theoretic personality (e.g.,
the relational algebra), an inferential string-formula personality (e.g., predicate
logic in modern notation), and a graph-theoretic personality (e.g., labeled, directed
hypergraphs for relations). The tabular form is needed for displaying and/or
modifying extensional data (especially for those users who need to be protected
from the detailed organization of the knowledge supporting the extensional data).
The set-theoretic personality is needed to support search without navigation. The
predicate logic personality permits stringwise expression of intensional knowledge
and the application of general inferencing techniques. The graphical personality
permits psychologically attractive pictures to be drawn for the special class of
users who are designing the database, maintaining the supporting knowledge, or
developing specialized inferencing techniques.

Note that only the tabular and set-theoretic aspects of RM/T are presented
here. Clearly, there are several kinds of graphs which can be associated with
RM/T. In addition to representing nary relations by hypergraphs, each graph
relation has an immediate representation as a directed graph (in certain cases
edge-labeled).

Other extensions of the relational model are under consideration: for example,
additional support for the time dimension and for a nonforgetting mode of
operation. It is hoped that RM/T can be developed into a general-purpose
restructuring algebra for databases. It should be remembered, however, that the
extensions in RM/T are primarily intended for the minority consisting of database
designers and sophisticated users; most users will probably prefer the simplicity
of the basic relational model.
ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

Extending the Database Relational Model * 433

ACKNOWLEDGMENT

The author has drawn heavily on the published ideas of Smith and Smith;
LaCroix and Pirotte; Hall, Owlett, and Todd; Schmid and Swenson; Hammer and
McLeod. The stimulus to write this paper came from the many provocative
utterances contained in the Proceedings of the IFIP TC-2 of 1976 and 1977 [24,
251. The author is grateful to William Armstrong, Donald Cameron, Christopher
Date, Ronald Fagin, John Sowa, Stephen Todd, and the referees for helpful
comments on a draft of this paper.

REFERENCES
(Note. References [l, 7, 21, 361 are not cited in the text.)
1. AHO, A. H., BEERI, C., AND ULLMAN, J. The theory of joins in relational databases. Proc. 19th

IEEE Symp. on Foundations of Comptr. Sci., 1977.
2. ASTRAHAN, M. M., ET AL. System R: Relational approach to database management. ACM Trans.

Database Syst. I,2 (June 1976), 97-137.
3. BEERI, C., BERNSTEIN, P., AND GOODMAN, N. A sophisticate’s introduction to database normal-

ization theory. Proc. Int. Conf. on Very Large Data Bases, Berlin, Sept. 1978, pp. 113-124.
4. CADIOU, J. M. On semantic issues in the relational model of data. Proc. 5th Symp. on Math.

Foundations of Comptr. Sci., 1976, Gdansk, Poland, Lecture Notes in Computer Science 45,
Springer-Verlag, pp. 23-38.

5. CODD, E. F. A relational model of data for large shared data banks. Comm. ACM 13, 6 (June
1970), 377-387.

6. CODD, E. F. Further normalization of the database relational model. In Database Systems,
Courant Computer Science Symposia 6, R. Rustin, Ed., Prentice-Hall, Englewood Cliffs, N.J.,
1971, pp. 65-98.

7. CODD, E. F. Recent investigations in relational database systems. Information Processing 74,
North-Holland Pub. Co., Amsterdam, 1974, pp. 1017-1021.

8. CODD, E. F. Understanding relations (Installment No. 7). FDT (Bulletin of ACM SIGMOD) 7,3-
4 (Dec. 1975), 23-28.

9. CODD, E. F. Extending the database relational model. Invited talk presented at the Australian
Comptr. Sci. Conf., Hobart, Tasmania, Feb. 1-2, 1979.

10. FAGIN, R. Multivalued dependencies and a new normal form for relational databases. ACM
Trans. Database Syst. 2,3 (Sept. 1977), 262-278.

11. FAGIN, R. Normal forms and relational database operators. Proc. ACM SIGMOD Conf., Boston,
Mass., May 30-June 1,1979.

12. FALKENBERG, E. Concepts for modelling information. In Modelling in Data Base Management
Systems, G. M. Nijssen, Ed., North-Holland Pub. Co., Amsterdam, 1976.

13. GOLDSTEIN, R. C., AND STRNAD, A. L. The MACAIMS data management system. Proc. 1970
ACM SICFIDET Workshop on Data Description and Access, Houston, Tex., Nov. 15-16, 1970.

14. HALL, P., OWLE’IT, J., AND TODD, S. Relations and entities. In Modelling in Data Base
Management Systems, G. M. Nijssen, Ed., North-Holland Pub. Co., Amsterdam, 1976.

15. HAMMER, M. M., AND MCLEOD, D. J. The semantic data model: A modelling mechanism for
database applications. Proc. ACM SIGMOD Conf., Austin, Tex., May al-June 2, 1978.

16. HEATH, I. J. Private communication, April 1971.
17. HEMPHILL, L. G., AND RHYNE, J. R. A model for knowledge representation in natural language

query systems. IBM Res. Rep. RJ2304, IBM Res. Lab., San Jose, Calif., Sept. 1978.
18. HENDRIX, G. G. Encoding knowledge in partitioned networks. Tech. Note 164, SRI International,

Menlo Park, Calif., June 1978.
19. JORDAN, D. E. Implementing production systems with relational data bases. Proc. ACM Pacific

Conf., San Francisco, Calif., April 1975.
20. LACROIX, M., AND PIROTTE, A. Generalized joins. SIGMOD Record (ACM) 8,3 (Sept. 1976), 14-

15.
21. LACROIX, M., AND PIROTTE, A. Example queries in relational languages. Tech. Note N107,

Manufacture Belge de Lampes et de Materiel Electronique, Brussels, Belgium, Jan. 1976; revised
Sept. 1977.

ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979.

434 * E. F. Codd

22. LIPSKI, JR., W. On semantic issues connected with incomplete information databases. ACM
Trans. Database Syst. 4.3 (Sept. 1979), 262-296.

23. MERRETT, T. H. Relations as programming language elements. Inform. Processing Lett. 6, 1
(Feb. 1977),29-33.

24. NIJSSEN, G. M., Ed. Mode&g in Database Management Systems. North-Holland Pub. Co.,
Amsterdam, 1976.

25. NIJSSEN, G. M., Ed. Architecture and Models in Database Management Systems. North-Holland
Pub. Co., Amsterdam, 1977.

26. PIROITE, A. The entity-property-association model: An information-oriented database model.
Rep. R343, Manufacture Belge de Lampes et de Materiel Electronique, Brussels, Belgium, March
1977.

27. PIROTTE, A. Linguistic aspects of high-level relational languages. Rep. R367, Manufacture Belge
de Lampes et de Materiel Electronique, Brussels, Belgium, Jan. 1978.

28. REITER, R. On closed world data bases. In Logic and Data Bases, H. Gallaire and J. Minker,
Eds., Plenum Press, New York, 1978.

29. RISSANEN, J. Independent components of relations. ACM Trans. Database Syst. 2,4 (Dec. 19771,
317-325.

30. RISSANEN, J. Theory of relations for databases-a tutorial survey. Proc. Symp. on Math.
Foundations of Comptr. Sci., 1978, Zakopane, Poland, Lecture Notes in Computer Science,
Springer-Verlag, pp. 536-551.

31. Rousso~ou~os, N., AND MYLOPOULOS, J. Using semantic networks for database management.
Proc. Int. Conf. on Very Large Databases, Sept. 1975.

32. SCHMID, H. A., AND SWENSON, J. R. On the semantics of the relational data model. Proc. ACM
SIGMOD Conf. on Manage. of Data, San Jose, Calif., May 1975, pp. 211-223.

33. SMITH, J. M., AND SMITH, D. C. P. Database abstractions: Aggregation. Comm. ACM20,6 (June
1977), 405-413.

34. SMITH, J. M., AND SMITH, D. C. P. Database abstractions: Aggregation and generalization. ACM
Trans. Database Syst. 52 (June 1977),105-133.

35. SOWA, J. F. Conceptual structures for a database interface. IBM J. Res. Deuelop. 20, 4 (July
1976), 336-357.

36. SOWA, J. F. Definitional mechanisms for conceptual graphs. Proc. Int. Workshop on Graph
Grammars, Bad Honnef, West Germany, Nov. 1978.

37. STONEBRAXER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of
INGRES. ACM Trans. Database Syst. 1,3 (Sept. 1976), 189-222.

38. TODD, S. J. P. The Peterlee relational test vehicle. IBM Syst. J. 15, 4 (1976), 285-308.
39. ULLMAN, J. D. Theory of Relational Databases. To appear.
40. VASSILIOU, Y. Null values in data base management: A denotational semantics approach. Proc.

ACM SIGMOD 1979 Int. Conf. on Manage. of Data, Boston, Mass., May 30-June 1, 1979.
41. WHITNEY, V. K. M. RDMS: A relational data management system. Proc. Fourth Int. Symp. on

Comptr. and Inform. Sci., Miami Beach, Fla., Dec. 14-16, 1972, Plenum Press, New York.
42. WIEDERHOLD, G. Database Design. McGraw-Hill, New York, 1977.
43. WONG, H. K. T., AND MYLOPOULOS, J. Two views of data semantics: A survey of data models in

artificial intelligence and database management. Znformatics 15,3 (Oct. 1977), 344-383.
44. ZANIOLO, C. Analysis and design of relational schemata for database systems. Tech. Rep. UCLA-

ENG-7669, Ph.D. Th., U. of California at Los Angeles, Los Angeles, Calif., July 1976.
45. ZANIOLO, C., AND MELKANOFF, M. A. A formal approach to the definition and design of

conceptual schemas for database systems. To appear in ACM Trans. Database Syst.
46. ZLOOF, M. M. Query-by-example: A data base language. IBM Syst. J. 16,4 (1977), 324-343.

Received March 1979; revised August 1979

ACM Tmnsactions on Database Systems, Vol. 4, NO. 4, December 1979.

