
Hierarchy
Introduction

• 22 Oct 21 Copyright © 2003-2021 Software Gems Pty Ltd Hierarchy • 1 of 4Derek Ignatius Asirvadem

Everything in the universe, except God, exists in the context of an hierarchy, denial of that existential fact when modelling data leads to horrendous
problems. The Relational Model supports hierarchies completely. That is to say, the definition and storage done correctly (Relationally), such that the
presentation (display) is straight-forward. Logic; mathematics, is top-down 1. The methods herein have been available from the days of the first SQL
platforms in the 1980's, it is pure SQL, it does not need CTEs or temporary tables or the HIERARCHYID datatype.
Hierarchies occur naturally in the world, they are everywhere. That results in hierarchies being implemented in many databases. While the logic in
the Relational Model is founded on First Order Predicate Calculus, it is a progression of the Hierarchical Model (as well as the Network Model 2).
It supports hierarchies brilliantly. Unfortunately the academics and authors of "textbooks":
• do not understand the Relational Model. They understand and teach only 1960's Record Filing Systems, characterised by RecordIds, falsely

marketed as "relational". Such "databases" are devoid of Relational Integrity (as distinct from Referential Integrity which is physical);
Relational Power; and Relational Speed. Such primitive systems are placed in an SQL container, for convenience (access; backup; etc).

• do not understand the hierarchies that exist in the data, let alone the hierarchies in the Relational Model. The result is, the hierarchies that exist
in the data are not recognised as such, and thus they are implemented in a grossly incorrect and massively inefficient manner.

The academics suppress both. Those methods are bottom-up, devoid of logic, extremely slow, and cannot scale. Explained in §1.2.
Conversely, if the hierarchy that occurs in the data, is modelled correctly, and implemented using genuine Relational methods (Relational Keys,
etc) the result is an easy-to-use and easy-to-code database, as well as being devoid of data duplication in any form (full Normalisation). It is
completely unlimited (eg. no limit to levels or scale), moving a single node (branch) updates just one row, and it is extremely fast 3. It is literally
Relational at its best.

1 Introduction

The main problem with 95% of the "databases" is that they are not logical (data rows with Keys formed from the data), they are primitive Record
Filing systems (physical records with RecordIds as "keys"). As such they are slow, and obtaining data recursively or traversing the trees, is very
slow. Continuing in the dark trench of ignorance, instead of obtaining education about the Relational Model, they declare that "relational
databases do not support hierarchies", oblivious to the fact that their "database" is neither a database nor Relational, and devise methods to deal
with their primitive structures. Such methods are ridiculous and ham-fisted. Note the focus on the display requirement rather than on the data, the
total absence of genuine Relational or logical data modelling.
Adjacency List
• The suppressors hilariously state that "the Relational Model does not support hierarchies", in denial that it is founded on the Hierarchical Model

(each of which provides plain evidence that they are ignorant of the basic concepts in the Relational Model, which they allege to be postulating
about). So they can't use the word Hierarchy in the name, it would give the game away. This is the stupid name they use.

• Generally, the data model will have recognised that there is an hierarchy in the data, but the implementation will be very poor, limited by
physical RecordIds, etc, and absent Relational Integrity, etc.

• They are clueless as to how to traverse the tree, or to find members of a branch, that it needs recursion.
Nested Sets
• An abortion, straight from hell. A Record Filing System within a Record Filing system. Not only does this generate masses of duplication and

break Normalisation, this fixes the records in the filing system in concrete. The inner RFS is a linked-list of physical records based on their
position in the displayed tree. I was not aware that the fixation of the display (as opposed to storage) could be materialised to this degree, to
pathology Surely treatment with drugs would provide more relief.

• Moving a single node requires the entire affected branch of the tree to be re-written. Beloved of the Date; Darwen; Fagin; and Celko types, and
the OO/ORM groupies: the addiction to endless manual labour.

HIERARCHYID
• The MS SQL HIERARCHYID Datatype does the same thing. Using it gives you a mass of concrete that has to be jack-hammered and poured

again, every time a node changes.
Common Table Expression
• The recent MS SQL feature, that provides exposition of an hierarchy, that exists in the data, which is stored in primitive RecordId based files. It

is laborious and slow, both to code (complexity) and to execute (temporary tables; etc). Completely unnecessary if one implements the ordinary
Relational hierarchy that preceded CTE by decades, as documented herein.

1.2 Ignorance of the Relational Hierarchy

1.1 Relational Hierarchy
There are three types of Hierarchies that occur in data, which is logical, that need to be modelled correctly. Because the context is SQL, which is
physical, it is given first.
0 Physical • Primary Concept

For understanding, in the first instance, it needs to be appreciated that every FOREIGN KEY relation is an hierarchy: a single parent row is
referenced by multiple child rows; the multiple referring rows refer to a single referred row. That is to say, the child exists in dependence of, in
subordination of, the parent. This is the physical declaration only, any FOREIGN KEY reference, including the three logical types have to use it.

1 Logical • Hierarchy Formed in Sequence of Tables
The Data Hierarchy is the first principle of the Relational Model 4, and the Relational Key is the method 5. They occur in every database.
• Conversely, the lack of it cripples the modelling exercise, and produces a 1960's Record Filing System, characterised by physical RecordIds.
The parent and child rows are in discrete tables. The hierarchy is plainly visible in the form (composition) of the Relational Key, which
progresses in each compounded step, in the sequence of tables: father, son, grandson, etc. It is essential for ordinary Relational data Integrity,
the kind that 95% of the database implementations do not have, due to following the false and vociferous prophets.
I have written about Relational Keys extensively elsewhere, this type of hierarchy is not expanded in this document.

2 Logical • Hierarchy of Rows within One Table
Wherein each row has a single parent in the same table. This is articulated in §2.

3 Logical • Hierarchy of Rows within One Table, via an Associative Table
Wherein each row has multiple parents in the same table, and resolution requires an Associative table. The problem is explained in §3, and the
solution is articulated in §4.

1 Whereas the anti-Relational mob (Date; Darwen; Fagin; the OO/ORM crowd) work backwards, or bottom-up, from the desired display, to the storage required for such.
2 While the hierarchic features in the Relational Model are a progression of the Hierarchical Model, the Independent Access feature is a progression of the Network Model.
3 The solution is pure Relational; pure SQL, which means a genuine SQL compliant platform (the freeware is not SQL), that supports recursion.
4 Dr E F Codd, A Relational Model of Data for Large Shared Data Banks. §1.4 Normal Form. First the pre-requisite is given in Fig 3(a) Unnormalised Set: the data

must be arranged in Trees, i.e.. Directed Acyclic Graphs. That prohibits circular references. A Tree is an hierarchy. The concept was familiar because the
predecessor was Hierarchical DBMS, well-known and understood.

5 Next, the definition of the Relational Key, the Relational Normal Form, is given in Fig 3(b) Normalised Set.

A Relational Model of Data for Large Shared Data Banks

mailto:derek@softwaregems.com.au?Subject=SG%20Hierarchy%20Document
https://www.softwaregems.com.au/Documents/Article/Database/Relational%20Model/Codd%20E%20F/A%20Relational%20Model%20of%20Data%20for%20Large%20Shared%20Data%20Banks.pdf

Hierarchy
Single Parent

• 22 Oct 21 Copyright © 2003-2021 Software Gems Pty Ltd Hierarchy • 2 of 4Derek Ignatius Asirvadem

IDEF1X Notation

Discriminates

2.3 Example Directory • Full
NodeType
NodeType NodeType
Name _Desc AK

Node

PathName _DescMax
Path _Desc
NodeType NodeType
NodeNo NodeNo

NodeFile (Leaf)

FileType FileType
Size _IntBig
FileNo NodeNo

NodeDirectory (NonLeaf)
DirectoryNo NodeNo

Classiifies

C NodeNo_NI_Path_ck

D Directory
F File

FileType
FileType FileType
Name _Desc AK

A Audio
B Block
b Binary
C Character (text)
I Image
V Video
 ...

NodeMember

Name _Desc AK.2
NodeNo_Parent NodeNo AK.1

NodeNo NodeNo
Is

X NodeType

Contains /
Belongs To

• A column in italics (IDEF1X) is a derived or computed column, it is not stored.
Path is the list of NodeNos from the root of the data tree, obtained via the Function
PathName is the list of Names

• The true logical Key is:
(Path, Name)

which is (a) huge, and (b) impossible because Path is multivalued and fails 1NF; 2NF, thus
a proper surrogate NodeNo is implemented as the Primary Key

• NodeNo is either a File or a Directory, based on Discriminator NodeType
• NodeNo that is a member (File or Directory) has 1 NodeNo_Parent
• A Directory NodeNo contains 0-to-n member NodeNos, wherein it is the NodeNo_Parent
• prevents duplicate Names within a single NodeNo_Parent

• Name alone is not unique
• NodeNo alone is unique (cannot be duplicated)

C NodeMember.NodeNo_NI_Path_ck
CHECK @NodeNo NOT IN Node_GetPath_fn(@NodeNo_Parent)
Check child not in the parent tree (not the child tree)

_IntBig

CHAR(30)

INTEGER

NodeNo

_Desc

CHAR(2)

Generic

CHAR(1)

CHAR(255)

Domain DataType

_Int
BIGINT

BIGINT

_DescMax

FileType
NodeType
Keys

6 Whereas the anti-Relational mob purposefully implement circular references, and demand that SQL (the data sublanguage defined in the Relational Model) be
changed to allow the insanity. Note well, that circular references do not exist in reality.

7 Those who teach Record Filing Systems, and physicalised methods for the implementation of hierarchies (page 1), such as Date; Darwen; Fagin; Celko; etc, are not
only ignorant of the Relational Model that they allege to explain, but exceedingly stupid, as evidenced by their propositions.

Part

PartCode_Parent

...
FullName

PartCode • PartCode [parent] comprises 0-to-n Parts[children]
• PartCode [child] is a constituent of 1 Part[parent]

Node

FileName AK.2
IsFolder

ParentNode AK.1
Node • Node is either a File or a Folder, based on IsFolder

• Node[parent] contains 0-to-n Nodes[children]
• Node[child] is contained in 1 Node[parent]
• AK prevents duplicate FileNames under a single ParentNode (a File of the same Name in different

Folders is permitted)
• Nodes cannot be duplicated

• Good for any single tree structure: for each row that is a parent, a tree is possible. Strangely called "one way" or "one tree" by non-technical
publishers, it means a single tree "down" for each parent, which in Foreign Key terms means the child references "up" to the parent.

• For each row, single parent in the same table (for each row, multiple children via the FOREIGN KEY relation, is of course ordinary)
• the term self-reference is false and confusing: the table cannot refer to itself, it is a row that makes a reference, and then to another row, not itself

• Exposition of Lineage (ancestry, the generations of parents), which may be a computed column (eg.. Path), requires a recursive Function
(single column, a scalar). The level of recursion is simple: one for each generation.

• Circular References are stupid, they are explicitly prohibited in the Relational Model 6. It is enforced by a Constraint that calls the Function.
• Do not store a Level: level is relative to the branch that is queried, and thus derived, storing it is exceedingly stupid because the trees are then

physicalised, and changes to the tree would demand changes to many rows 7 .

2 Single Parent • Normalised

2.1 Example Inventory

2.2 Example Directory • Simple

C PartId_NI_Lineage_ck

C Node_NI_Path_ck

C Part.PartCode_NI_Lineage_ck
CHECK @PartCode NOT IN Part_Lineage_fn(@PartCode_Parent)

C Node.Node_NI_Path_ck
CHECK @NodeNo NOT IN Node_Path_fn(@ParentNode)

Comprises

Contains
/Is Contained In

Subtype
• Refer to the Subtype document for a full explanation

of the concept, and the associated Constraints.
Anchor
• An anchor or zero row, is required, in order to:

• allow multiple data trees
• inform the recursive Function to terminate

• This is not data. It is safe because the data rows will
be accessed with joins to the subordinate tables.

• It is not a contrived row, it is an anchor.
• After the CREATE TABLE commands, before applying

the Foreign Key Constraints, eg:
NodeDirectory.Node_Is_Directory_fk

insert the single anchor row with a zero NodeNo value:
INSERT Node (0, "D", 0, "[Anchor]")
INSERT NodeDirectory (0)

Subtype

IsExclusive_ckC

IsExclusive_ckC

NodeDirectory.IsExclusive_ck
CHECK ValidateExclusive_fn (NodeNo, "D") = 1

C

NodeFile.IsExclusive_ck
CHECK ValidateExclusive_fn (NodeNo, "F") = 1

C

mailto:derek@softwaregems.com.au?Subject=SG%20Hierarchy%20Document
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf
https://www.softwaregems.com.au/Documents/Article/Database/Relational%20Model/Subtype.pdf

Hierarchy
Multiple Parent • Problem

• 22 Oct 21 Copyright © 2003-2021 Software Gems Pty Ltd Hierarchy • 3 of 4Derek Ignatius Asirvadem

#

BB

Composition

ComponentId AK.1
Quantity

AssemblyId AK.2

Assembly

CreatedDate
IsObsolete

UnitsPerQty
FullName AK2

QtyBackOrder
QtyInStock

PartCode AK1
AssemblyId

Component

CreatedDate
IsObsolete

UnitsPerQty
FullName AK2

QtyBackOrder
QtyInStock

PartCode AK1
ComponentId

IDEF1X Notation

• This is a simplified model of the Hierarchical DBMS implementation.
• The IDEF1X model shows the logical data as usual.

• The physical structure, a B-Tree for initial access by Key, followed by a linked-list
of pointers for the records, is not shown.

• Massive duplication: many Parts are both an Assembly and a Component.

• AssemblyId comprises many ComponentIds
• ComponentId is consumed in many AssemblyIds
• The AK facilitates search by Component

Comprises Is Consumed In

For understanding and comparison only.
This is how the Bill of Materials structure was actually implemented in DBMS platforms prior to the Relational Model. In the 1960's & 70's
DBMS world, this was known as the Bill of Materials Problem, it was famous, because it signified the limit of implementation in HDBMS, and
the problem that needed to be solved. It was a specific problem that IBM tasked Dr E F Codd 7 to overcome. Which he did, brilliantly (solution,
next page).

• This is the Network DBMS implementation of the Bill of Materials Structure.
• Hashed or Randomised access by Key for the Master file, followed by a linked-list of pointers to the

records in the Variable files.
• In addition to being superior to HDBMS for OLTP due to the absence of the B-Tree, it is considerably

superior for the Bill of Materials implementation because the duplication is deployed to the child files, the
records of which are much smaller.

Part

Component Assembly

Comprises Is Consumed In

3 Pre-Relational

3.2 Network Model

3.1 Hierarchic Model

8 In those days, in database science, all theory and practice was produced by engineers within the big five DBMS firms, including patents and internal academic
papers, with very few published. See the References in the Relational Model. An independent academia was virtually non-existent. When it did start, it was
insanity, solutions to problems in total isolation from reality, such as MVCC and Ingres, the "dbms" that never worked. Same with its bastard son PostGresNONsql.
It is because Codd was a theoretical engineer, not a pure academic divorced from reality, that academics hate him; suppress the Relational Model; undermine and
sabotage Relational theory and practice, at every opportunity.

mailto:derek@softwaregems.com.au?Subject=SG%20Hierarchy%20Document
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf

Hierarchy
Multiple Parent • Solution

• 22 Oct 21 Copyright © 2003-2021 Software Gems Pty Ltd Hierarchy • 4 of 4Derek Ignatius Asirvadem

Person

DeathDate
BirthPlace AK.5

CreatedDate
...

Initial AK.3
BirthDate AK.4

FirstName AK.2
LastName AK.1
PersonNo

Progeny

ChildNo AK.1
...

ParentNo AK.2

Part

CreatedDate
IsObsolete

UnitsPerQty
FullName AK

Price
QtyInStock

PartCode

Composition

Quantity

AssemblyCode AK.2
ComponentCode AK.1

• Parent and Child are Normalised into Person
• Person produced 0-to-n [child] Persons
• Person is product of 0-to-2 [parent] Persons

• Assembly and Component [§3] are Normalised into Part
• Each Part [Assembly] comprises 0-to-n Composition[Component Parts]: many child Parts
• Each Part [Component] is component in 0-to-n Composition[Assembly Parts]: many parent Parts

• Views may be used to avoid 'complex' SQL code

Produced
Is Product Of

Is Component In
Comprises

• Sometimes called "two way" meaning two trees for a given row (one "up"; and one "down"): a row has multiple parents in the same table
• This is known as the Bill of Materials structure, available since 1970, on genuine SQL Platforms since 1981.

• No duplication due to genuine Relational perspective, and Normalisation.
• it overcomes the Bill of Materials Problem [§3] beautifully
• put another way, it resolves a many-to-many relation between rows in the same table [Part as Assembly; Part as Component]

• Bill of Material Explosion (full exposition of the hierarchy; any branch of the tree; either ancestry or progeny) requires a stored proc (multiple
rows, a vector)

• Exposition of Lineage is not possible due to multiple parents
• Since parents are multiple, Part::Path is no longer 1::1, thus it cannot be deployed in Part, it may be deployed in the View.

• Whether circular references are to be prevented or not depends on the data (permitted in §4.1; prevented in §4.2)
• If it is to be prevented, it must be validated in the Transaction 9 that adds the row to the associative table.

• AssemblyCode & ComponentCode are RoleNames for PartCode (Relational concept)
• Each Composition [AssemblyCode] is constituent of 1 Assembly [Part]
• Each Composition [ComponentCode] composes 1 Part[Component]

• The AK is not required, it is provided for performance: search by ComponentCode

• ParentNo & ChildNo are RoleNames for PersonNo
• Each Progeny[ParentNo] is 1 [producer] Person
• Each Progeny[ChildNo] is 1 [product] Person

4 Multiple Parent • Normalised

4.1 Example Inventory

4.2 Example Progeny

Assembly_V

FullName

ComponentCode
ComponentQty

Price
QtyInStock
UnitsPerQty

AssemblyCode
Component_V

ComponentQty

FullName

AssemblyCode
Price
QtyInStock
UnitsPerQty

ComponentCode

C Progeny.Parent_LE_2_ck
CHECK Person_ParentCount_fn(@ChildNo) <= 1

C Progeny.Parent_NE_Child_ck
CHECK @ParentNo != @ChildNo

IDEF1X Notation

9 In Open Architecture databases, direct writes to the tables are prohibited, and all changes to the database are made via a set of OLTP Transactions, which is the
Database API.

Open Architecture

mailto:derek@softwaregems.com.au?Subject=SG%20Hierarchy%20Document
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf
https://www.softwaregems.com.au/Documents/Article/Application%20Architecture/Open%20Architecture.pdf

	Introduction
	Single Parent
	Multiple Parent • Problem
	Multiple Parent • Solution

