
Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 1 of 10

Sybase ASE Architecture
Foundation

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Client

Network

Program

Unlimited Remote Server

Open
Server

Client
Lbrary

Client App Server

• ASE Server
• App Server
• Web Server
• Rep Server

ASE All versions

• Ensure ASE has a clear path to the data
• Ensure the fewest servers compete, at each layer

in the hardware stack and the software stack
• RAID1+0 is recommended over any other
• A Private DiskGroup for each is essential
• Raw Partitions are far superior to /fs files
• Especially for tempdb (noting the absurdity of

recommendations otherwise)
• Mirroring, to either a local or remote SAN, is

provided, as an alternative to SAN-level mirroring

Besides being SQL-compliant, Sybase Adaptive Server Enterprise is a genuine database
server. Unfortunately these days, with cooks and bottle-washers writing postulant "servers",
the word genuine is demanded. Like Unix, and vastly different to alleged "servers", it:
• consists of a single binary, that runs as pure Multi-Threaded 1 code
• has a Kernel and a Scheduler, which are tightly bound to the o/s and the chipset
• Engines that execute as the fewest possible Unix Processes
• designed architected as a database machine, and operates the best on a machine that is thusly

suited and configured for the high throughput of a database server

• All resources are located in a single Shared Memory Segment, allocated, and usually
locked

• which is shared by the Engines (Unix Processes)
• the integrity of which is protected by spinlocks (ensure the fewest Engines!)
• All resources are highly configurable, and all but the demanded few are dynamic (no

reboot required)
• Memory structures that consume considerable space are shown here, the remainder

are collected under Other Structure. All memory structures are defined later.
Dashed lines denote optional structures.

• All larger memory structures are hashed, providing immediate location of objects,
and eliminating memory searches. The hash tables are not shown at this level of
detail; they are shown in the relevant chapters.

• The number of open objects, etc are collected in Open. This is dbtable, the highest
level memory structure

• Locks shown by Type, but arranged in chains by blocking Task.

SERVERNAME.krg

1 The technical term established since 1969, not the
private definition used in Oracle documentation.
Contrast with Chip Multi-Threading.

Green Memory Component
Blue Function

Backplane/IOController/Hub
PCI Card & Extender
Fibre Channel
Local/Remote Device

Director
Switch

HBA

SAN

RAID1+0 DiskGroup

Cache

RAID5

FileSystem

Fibre

Exposed
LUNs

Data 8

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1

Log 2

Log 1

Logical Volume

Procedure
Cache

Statement Cache
Additional Network

Named Cache Q
Log Cache

Named Cache P LIO

Default
Data

Cache

Tempdb Cache

Network
Listener

Object
Index

Partition

Database
Open

Network
 Merge

Disk I/O
Structure

Binary 63MB

DNPS Default Network Packet Size
STLC Session Tempdb Log Cache
SG Stack Guard

Per Worker

STLC
User Log Cache

Stack

DNPS x 3
Memory/Worker

SG

Buffer

Buffer

Buffer

Buffer

Other
Structure

[21]

Mon Pipes

Device

Page RowTable

Per Connection

STLC

Stack SG

DNPS x 3
Heap

Monitor SQL

User Log Cache

Database Machine
• Sybase ASE is designed to execute as a Database Machine, a database server that

is tightly bound to the host system, the machine
• Performance can be increased dramatically, when

• the operating system and the machine are configured for database use, and
• that binding is attended to.

• Unfortunately, that level of performance is not known to new administrators.
Because ASE performs much faster than whatever they have migrated from, even
on machines that are not configured for database use (default configurations are
for generic web servers), greater performance is not sought.

Log I/O Structure
Per Db

• Physical I/O is the slowest link
in the performance chain.

• SAN Configuration is very
important for any database
server, it is the subject of a 50-
page document for customers.

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 2 of 10

Sybase ASE Architecture
Task Context

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Client

Network

Program

Remote Server

Open
Server

Client
Lbrary

Client App Server

• Engines execute as the Unix Processes, which should be the fewest possible for the load. A Server with four
Engines configured is shown

• User Tasks (for each connection and worker) and a few server Tasks (for independent functions), operate as
internal processes

• The Example shows states of Tasks, that have been achieved while executing
• 3D articles are live objects. 2D articles are the more fixed context within which they operate

Director
Switch

HBA

SAN

RAID1+0 DiskGroup

Cache

RAID5

FileSystem

Fibre

Exposed
LUNs

Data 8

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1

Log 2

Log 1

Logical Volume

Procedure
Cache

Statement Cache
Additional Network

Named Cache Q
Log Cache

Named Cache P LIO

Default
Data

Cache

Tempdb Cache

Network
Listener

Object
Index

Partition

Database
Open

Network
 Merge

Sleep

Binary 63MB

DNPS Default Network Packet Size
STLC Session Tempdb Log Cache
SG Stack Guard

Hit

Example

Page RowTable

Processes

Run

Log I/O Structure
Per Db

Disk I/O
Structure

Other
Structure

[21]

Mon Pipes

Device

Per Connection

STLC

Stack SG

DNPS x 3
Heap

Monitor SQL

User Log Cache

ASE up to V15.5

Send Wait

Lock Wait

Lock Acquired

Awaiting Command

I/O Wait

I/O Returned

Task
ExhaustedLock Request I/O Request Executing

Task

Task

Task

ASE Internal Task
User
Running

User
Sleeping

All Tasks are Internal, visible
Smaller size indicates Server Task

Process

Unix

Deadlock Tune

HK Garbage Collector

Licence Heartbeat

Port Manager

Network Handler

Checkpoint Sleep

Housekeepr Wash

Mirror Handler

Housekeeper Chores

ASTC Handler

DTC Commit Service

Shutdown HandlerALS ULC Flusher

ALS Log Writer

Engine 0Engine Engine 1Engine Engine 2Engine Engine 3Engine

Logging, Commit
Readback, Rollback

Execution
Data

Path

Exhausted2

4

1 2

Context Switch
Cache Miss
Disk Device
Disk System Write
Exceed BatchSize
Lock Normal (Logical Lock)
Lock APL Index (Address Lock)
Lock Latch
Lock LW Protection (Modify Conflicts)
Log Group Commit
Log IO Structure (Log Semaphore)
Log Last Page Write
Network Receive
Network Send
Network Sleep (Network Services)
Other
User Log Cache (PLC Lock)
Voluntary Yield

3

Or when resource wait is complete
Scheduled4

3

➀ A Task runs on an Engine, until it Context Switches to another Task, because:
➁ the Task exhausts its timeslice (the Task is returned to the Run Queue), or
➂ a resource wait occurs (the Task moves to the Sleep Queue)
The Context Switch is internal, the Engine does not yield the CPU.

➃ When the resource is acquired, the Task
becomes runnable, and it waits for the
Engine that issued the request.

(Server Tasks simply enter the Run Queue and
wait for the next available Engine.)

Engine Available1
Initiating (for resource wait) or any

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 3 of 10

Sybase ASE Architecture
Execution

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Director
Switch

HBA

SAN

RAID1+0 DiskGroup

Cache

RAID5

FileSystem

Fibre

Exposed
LUNs

Data 8

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1

Log 2

Log 1

Logical Volume

Client

Network

Program

Remote Server

Open
Server

Client
Lbrary

Client App Server

Procedure
Cache

Statement Cache
Additional Network

Named Cache Q
Log Cache

Named Cache P LIO

Default
Data

Cache

Tempdb Cache

Network
Listener

Object
Index

Partition

Database
Open

Network
 Merge

Sleep

Binary 63MB

DNPS Default Network Packet Size
STLC Session Tempdb Log Cache
SG Stack Guard

This shows a selection (not all!) of execution paths, providing an indication of interaction between the components.
• Flow of control from a Task perspective is examined elsewhere.

Hit

Miss

Wash

LRU

Example

Page RowTable

Disk I/O
Structure

Other
Structure

[21]

Mon Pipes

Device

Per Connection

STLC

Stack SG

DNPS x 3
Heap

Monitor SQL

User Log Cache

Log I/O Structure
Per Db

Sleep

Processes

Run

Deadlock Tune

HK Garbage Collector

Licence Heartbeat

Port Manager

Network Handler

Checkpoint Sleep

Housekeepr Wash

Mirror Handler

Housekeeper Chores

ASTC Handler

DTC Commit Service

Shutdown HandlerALS ULC Flusher

ALS Log Writer

ASE up to V15.5

Send Wait

Lock Wait

Lock Acquired

Awaiting Command

I/O Wait

I/O Returned

Task
Lock Request I/O Request Executing

Task

Task

Task

ASE Internal Task
User
Running

User
Sleeping

All Tasks are Internal, visible
Smaller size indicates Server Task

Process

Unix

Engine 0Engine Engine 1Engine Engine 2Engine Engine 3Engine

 Disk Handler
Fetch

Asynch
I/O

Returned
Write

Asynch

Search

Lock
Manager

Logging, Commit
Readback, Rollback

Execution
Data

Path

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 4 of 10

Sybase ASE Architecture
Parallelism

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Director
Switch

HBA

SAN

RAID1+0 DiskGroup

Cache

RAID5

FileSystem

Fibre

Exposed
LUNs

Data 8

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1

Log 2

Log 1

Logical Volume

Client

Network

Program

Remote Server

Open
Server

Client
Lbrary

Client App Server

Procedure
Cache

Statement Cache
Additional Network

Named Cache Q
Log Cache

Named Cache P LIO

Default
Data

Cache

Tempdb Cache

Network
Listener

Object
Index

Partition

Database
Open

Network
 Merge

Binary 63MB

Worker Pool

DNPS Default Network Packet Size
STLC Session Tempdb Log Cache
SG Stack Guard

• Sybase ASE is massively parallel, not only relating to the machine, but providing it to executing tasks, and that
parallelism has been progressed and advanced over decades

• Parallelism can be configured and monitored at every resource level

Hit

Hit

Hit

Hit

Page RowTable

Sleep

Processes

Run

ASE up to V15.5

Coordinator

Producer

Producer

Consumer

Consumer

Consumer

Consumer

ASE Internal Task
User
Running

User
Sleeping

All Tasks are Internal, visible
Smaller size indicates Server Task

Process

Unix

Engine 0Engine Engine 1Engine Engine 2Engine Engine 3Engine

Search

Lock
Manager

Logging, Commit
Readback, Rollback

Execution
Data

Path

 Disk Handler
Fetch

Asynch
I/O

Returned
Write

Asynch

Disk I/O
Structure

Per Worker

STLC
User Log Cache

Stack

DNPS x 3
Memory/Worker

SG

Other
Structure

[21]

Mon Pipes

Device

Per Connection

STLC

Stack SG

DNPS x 3
Heap

Monitor SQL

User Log Cache

➀ Parallelism is implemented using Worker Tasks that execute
under the initiating Task, which is the coordinating Task.
• Workers are automatically assigned as Producers or

Consumers.
• Result sets are merged at the Network level.
• In order to avoid saturation, the Workers are limited to a

pool, which is also configurable

➁ Locks are Normalised, and
organised as a family under the
initiating task, which is the
coordinator.

1

2

Log I/O Structure
Per Db

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 5 of 10

Sybase ASE Architecture
CPU Yield

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Binary 63MB
Processes

Unix

ASE
Shared

Memory

Binary 63MB
Processes

Unix

ASE
Shared

Memory

Binary 63MB
Processes

ASE up to V15.5

Send Wait

Lock Wait

Lock Acquired

I/O Wait

1 2 3

Send Wait

Lock Wait

Lock Acquired

I/O Wait

Engine 0Engine Engine 1Engine Engine 3Engine

Task

Task

Task

Task

Task

Task

Task

Task

Task

5

Send Wait

Lock Wait

Lock Acquired

I/O Wait

Engine 2EngineEngine 0Engine Engine 1Engine Engine 3Engine
6

Engine 0Engine Engine 1Engine Engine 3EngineEngine 2Engine
4

Idle; searching for runnable Task, with limit
Idle; yielded
Idle; searching for runnable Task, without limit

➀ A Task runs on an Engine, until it Context Switches, because:
➁ the Task exhausts its timeslice, or
➂ a resource wait occurs

The Context Switch is internal, the Engine does not yield the CPU. If the
Engine finds a task that it can run, the cycle continues. If not, it holds the
CPU and waits for one. The method used is:
➃ it loops runnable process search count times.

Eventually
➄ the Engine yields the CPU.

Goal: Fewest Engines, Not Yielding
The architecture is brilliant, it allows tuning of the constituent issues discussed, and it operates
uneventfully under the watch of competent Administrators.
• For the machine, configure the fewest Threads per Core; the fewest Cores per CPU, for the load.
• In ASE, configure the fewest Engines for the load.
• Aim for CPU Utilisation to be in the 80-95% range; it is an unyielding Database Server.
• Configure a small runnable process search count that is appropriate for your specific

machine, o/s and load. Start at 5 or 10, and work upwards.

This section explains a commonly misunderstood issue, and the compounding negative effects of incorrect machine or ASE configuration.
• Note that ASE sees only logical CPUs (whatever Cores or Threads that have been configured on the host system), and it will take full advantage of max
online engines.

5
6

4

CPU Yield
Sybase ASE is designed to execute as a Database Server, the only server on
the host system, tightly bound to the machine.
Not Yielding the CPU is a design principle:
• It avoids o/s level Context Switches, which are the most expensive

operation at the Unix level. Once the CPU has been yielded, it has to wait
until it is scheduled to execute again.

• (which is one reason why a product without a server architecture, is a circus
of clowns, bumping into each other, and why a circus needs a machine ten
times more powerful than Sybase for the same load).

• Yielding the CPU is undesirable for a high performance database server
• Note that voluntarily yielding the CPU is quite different to being forced off

the CPU by Unix, due to other processes (planned or unplanned) running
on the system.

CPU Monopolisation
Failure to understand this, leads to two common configuration errors,
especially on large machines, each of which, although negative, may be
invisible to the untrained eye, but the combination is highly visible to all:
high CPU usage without a proportionate increase in throughput:
• runnable process search count set too high:
➅ Engines are prevented from yielding the CPU when there is no work.

• max online engines set too high for the load:
• over-subscription of CPUs, which means many Engines are very busy

doing nothing at all.
• Many Engines are prevented from yielding the CPU.

The two errors in combination results in many Engines being busy doing
nothing, and they are prevented from yielding the CPU.
CPU monopolisation is desirable when the architecture is understood and it is
configured appropriately, and it is a disaster when not. The results of placing
people with no tertiary technical qualifications in technical positions are
catastrophic.

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 6 of 10

Sybase ASE Architecture
Limit

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Binary 63MB
Processes

Unix

ASE
Shared

Memory

Binary 63MB
Processes

ASE up to V15.5

Engine 3Engine 1EngineEngine 0Engine Engine 2Engine Engine 5Engine Engine 6Engine

I/O Returned

Send Completed

Receive Completed

57 94

8

Send Wait

Lock Wait

Lock AcquiredI/O Wait

Task

Task

Task

Task

2 The architectural limts are experienced only at the high end of throughput, ie. on servers that have a large number of Engines. While smaller
systems can operate quite satisfactorily without implementing Load Distribution, such work is demanded for larger systems (anything over 8
Engines). Stated another way, the limit is only a limit due to absence of such work, it is easily overcome..

3. If most Engines are not utilising the CPU to 80 to 95%, the server is over-subscribed, and this will lead to an array of problems (refer to the
previous section).

Engine 3Engine 1EngineEngine 0Engine Engine 2Engine Engine 6EngineEngine 5Engine
6

This section explains the limits of the Process Kernel architecture, that motivated the architecture in the next release.
• This should not be confused with the results of configuration errors, described in the previous section.

The Limit
Although the architecture is far superior to alternate architectures (note, it
cannot be compared with the circuses), it does have finite limits, which are
apparent in this progression. Due to Engines executing as Processes:
• the completion of a Disk I/O is bound to the Engine that issued the request

for the Task
• Network I/O for each Task (notably, including RepAgent & CIS) is bound

to the Engine that made the connection
The result is, uneven Load Distribution on large servers 2:
➃ some Engines are idle
➄ some of those, idle to the point of yielding the CPU
➆ some (usually most) Engines are busy, but not fully utilised 3
➇ but they cannot serve Tasks that are bound to other Engines; those

Tasks have to wait further
➈ whilst other Engines are over-utiliaed; the ones that are waited for.

Idle; searching for runnable Task, with limit
Idle; yielded
Idle; searching for runnable Task, without limit

5
6

4

Error
In addition, if the configuration has errors, such as:
• runnable process search count set too high:
➅ Engines are prevented from yielding the CPU when there is no work.

Load Distribution
Therefore for servers with many Engines Load Distribution is essential.
ASE provides facilities for it (EngineGroups; ExecutionClasses; etc), and
implementation is easy for competent Administrators. Failure to balance the
load means the limit is viewed as a Wall rather than an opportunity.
The limit of the architecture becomes visible in two cases only:
• on servers with many Engines, where Load Distribution is absent, or has

been configured incorrectly.
• on servers that are over-subscribed (too many Engines for the load), which

is a gross error. Here the Wall is encountered prematurely, due to the naïve
configuration.

In both cases, the ends of the spectrum (Engines that are idle, or over-utilised)
are visible, and the majority in the middle (Engines that are not fully utilised)
tends to go unnoticed. It is the Engines in the middle that need more work,
that will cancel each end of the spectrum. However, the innocent do not
appreciate the relevance of that; they react to the Engines that are over-
utilised, and they add more Engines (which are quite useless). Hence the
Wall is not only self-created, it becomes insurmountable.

Busy; moderate CPU Usage7
Busy; high CPU Usage9

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 7 of 10

Sybase ASE Architecture
Componentry

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Index Scan 5

Lock Manager 32/12

RepAgent r 45

Replication

Asynch Pre-Fetch 22/2Cache Manager 15/2

Monitor 3

Group h

Group g

• The Host System is of course outside the Sybase server. In order to allow Host System
Metrics (vmstat, iostat) and ASE Metrics to be examined together, and to be charted
or graphed together, it is treated as a Component.

• If it is implemented, Application level metrics are captured, (each Application is treated
as a Resource). Not shown.

• While this diagram serves to identify the Structure of ASE, to some degree, and hopefully
increases your ability to monitor it and improve its performance, it does not constitute an
Architecture or Componentry diagram.

Structure of Sybase ASE
In order to understand ASE, it is important to understand not only the Components, but their hierarchy within the server:

18 Server Components
Asynch Pre-Fetch
Application
Cache Manager
Disk Handler
Host System
Housekeeper
Index Scan
Kernel
Log Manager
Lock Manager
Memory
Monitor
Network Handler
Nonclustered Maint
Procedure Cache
Parallelism
Statement Cache
Transaction

289 Server level Metrics,
grouped by Component

Disk Check
Disk Check Returned IO
Disk IO Outstanding
Disk IO Request
Disk IO Completed

...
Log ULC Record
Log ULC Grant
Log ULC Wait
Log Log IO Structure Grant
Log Log IO Structure Wait
Log Log Allocation

...
Lock Request Table
Lock Request Table-Excl
Lock Request Table-Excl-Int

Component ComponentMetric ResourceType Resource ResourceMetric

In order to understand Sybase ASE and its components, the best avenue by far, is the examination and comprehension of the Metrics reported in sysmon. Note
that there is, of course, a deep and meaningful, performance-related reason why each Metric is captured, and reported.
Although invaluable, sysmon poses problems for some people. A program that processes the reports, such as our Sysmon Processor overcomes them. Some
obstacles posed in sysmon, and their manner of address are as follows:

• Metric names are not consistent across the board, the meaning is sometimes obscured
• The organisation of some Metrics in poor. Together, the interpretation of Metrics is hindered

Resolution: Metrics names have been completely Normalised; they are grouped logically and in the relevant hierarchy (notice the indentation), such that it
parallels the structure of the server.

• The reports are difficult to navigate
• The Metrics across many reports, which are 40 to 70 pages each, , especially when 24 or 48 are being collected per day, are difficult to correlate

Resolution: The Sysmon Processor produces all reports for the day in a grid, and allows various groupings, such as by period, etc. Example Processed Repor.
The structure of the server, and therefore the structure of the processed reports, fall into three categories:

• Component Actual components of ASE: these exist in every server, and are available as soon at it is installed. A set of Metrics is collected for each.
• ResourceType There are five ResourceTypes: Disk; Cache; Engine, and optionally, ReplicationAgent and Application.

• Resource Of course, everything in the server is a resource, in the normal English sense. Named Resources are specifically those resources that are
added by the administrator, after installation; they are specific to each server (the first of each set is added during the installation). A set of Metrics is
collected for each Resource. Since there are multiple Resources within each ResourceType, this forms a repeating group of Metrics.

• ResourceGroup Allows Resources to be grouped by usage, type, etc. Essential for large numbers of Resources; and for Load Distribution.
• Activity Several Metrics are collected, which are neither Components nor Resources; they are grouped logically, and presented the same as Components.

Disk Read APF
Disk Read
Disk Write ...

Cache Wait
Cache Search
Cache Hit ...

Engine Busy
Engine CPU Busy
Engine IO Busy ...

Cache
52 Metrics

Disk
4 Metrics

Engine
12 Metrics

Sysmon Metric

ResourceComponent Component
Server

Disk Handler 8/5

Housekeeper 9

Kernel 25/10

Log Manager 19/4

Host System 21/1

Nonclustered Maint 7

Network Handler 9/7

Transaction 3/9

Parallelism 17

Procedure Cache 9/1

Statement Cache 8

Memory 6

Application 10

Component

Resource

Activity Group

Example Processed Report

RepAgent Log Scan
RepAGent Record Scanned
RepAgent Log Truncation Wait ...

RepAgent
45 Metrics

Application
18 Metrics

Appl CPU Busy
Appl IO Busy
Appl Idle ...

Server-
specific,

as
configured

Group

Resource Group

ASE All versions

The numbers in the cells identify the number of raw and
Computed Metrics captured for the Component or
Resource in the current version of our Sysmon Processor.
Additional Metrics are computed at execution time:
• Utilisation, which is provided for all Resource Metrics
• Rate Per Sec for selected Metrics
• Schedule Utilisation

RepAgent q 45

Disk p 3/1

master 3/1

Cache l 34/4

Engine 0 11/1

Disk o 3/1

Disk m 3/1

Disk n 3/1

Cache k 34/4

default 34/4

Engine 1 11/1

Engine 2 11/1

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20
http://www.softwaregems.com.au/Documents/Article/Sysmon%20Processor/Sysmon%20Processor%20Eg%20CaptureGroup.pdf

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 8 of 10

Sybase ASE Architecture
Threaded Kernel

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Binary 326MB

Single
Process

Run

Sleep

ASE V15.7 & subsequent

All Tasks are internal, visible
Smaller size indicates Server Task

ASE Internal Task
User
Running

User
Sleeping

Task

Task

Task

Task

Send Wait

Lock Wait

Lock Acquired

Awaiting Command

I/O Wait

I/O Returned

ThreadProcess

Unix

ThreadThread

ThreadThread

ThreadThread

ThreadThread

ThreadThreadThreadThread

ThreadThread

4

The K21 Threaded Kernel is the latest progression, in a venerable series of progressions, in both Symmetric Multi-Processing and Chip Multi-Threading:
• Modern operating systems are moving away from multi-process parallelism to multi-threaded processes, fully utilising hardware Threads
• ASE is progressing in the same manner
• It executes as a single Unix Process, using genuine o/s Threads
• The Kernel and its Threads are (no surprise) highly configurable
• Again this should be the fewest possible for the load.

1 2

Exhausted2

After resource wait is complete
Scheduled4

3

At the level relevant to Task execution, nothing has changed:
➀ A Task runs on an Engine (now a Thread), until it Context Switches:

➁ the Task exhausts its timeslice, or
➂ a resource wait occurs

The Engine Thread Context Switches internally to another Task, without
yielding the CPU.
➃ When the resource is acquired, the Task becomes runnable.

Terminology
• There are three types of Threads. The documentation uses the terms Engine and

Engine Thread interchangeably, without explanation, which causes confusion
• Stating that Engines have been replaced with Threads, or that the kernel has

changed from Process-based to Thread-based, is too simplistic and interferes
with genuine understanding

• Engines remain as tangible articles, with a full set of Metrics. However an
Engine exists as an Engine Thread.

• Once that is understood, an Engine and an Engine Thread can be said to be
essentially the same thing; the difference is apparent from the context.

!"#!!"#$%&'(!"#')*+,'-*&.!!!/&012!345!3463!

$%&'()#*$'+,)+)#-+'.+/#!#01*(2,*(1.3##

4567#758#75986:8:#;89<8=#>9?<@A#7B#758#76>=8C#

7-0,&$.*',!89:!
2&'+.*';!

<,+=1,!
"#$%&'()*+,-*

1(1.,>!?!
*$%0#@,!
8DD?E?8<EF!

8$%0#@,!.#&+!
A&.&'1*';!)#0!
"87!?!<,%!
B;,'-!C#0D!

E,>>!
*'-,0),0,'1,!
A,-C,,'!"FG!
?!89:!A#='+!

C#0D!

/#0,!
EB<A?A78<7!

&'+!
G98:?E76>=8!
%,0)#0$&'1,!

EngineThread Available1

3 Context Switch
Cache Miss
Disk Device
Disk System Write
Exceed BatchSize
Lock Normal
Lock APL Index
Lock Latch
Lock LW Protection
Log Group Commit

Log IO Structure
Log Last Page Write
Network Receive
Network Send
Network Sleep
Other
User Log Cache
Voluntary Yield

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 9 of 10

Sybase ASE Architecture
Thread Pool

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Binary 326MB

Single
Process
Single
Process

I/O

syb_system_pool

Blocking

syb_block_pool

Sleep

Run

Engine

syb_default_pool

ASE V15.7 & subsequent

All Tasks are internal, visible
Smaller size indicates Server Task

ASE Internal Task
User
Running

User
Sleeping

Task

Task

Task

Task

Send Wait

Lock Wait

Lock Acquired

Awaiting Command

I/O Wait

I/O Returned

ThreadThread

ThreadThread ThreadThread

ThreadThread

ThreadThread

ThreadProcess

Unix

ThreadThread

• Three types of Threads, organised into pools
• Additional Threads can be configured in Engine & I/O Pools
• Additional Engine ThreadPools can be configured
• EngineGroups are replaced by Engine ThreadPools

1 2

3

➀ A Task runs on an Engine Thread, until it Context Switches, because:
➁ the Task exhausts its timeslice, or
➂ requires I/O, when it is transferred to an I/O Thread which issues
the request.

The Engine Thread executes any runnable Task.
➃ When the I/O completes, the Task is picked up by any I/O Thread,

which handles the completion, etc. The Task is now runnable.
• I/O Threads execute for very short durations.
• Blocking Threads are used for server Tasks that Run To Completion.

4

Goal: Fewest Threads, Not Yielding
• For the machine, configure the fewest Threads per Core; the fewest Cores per CPU, for

the load.
• The Threaded Kernel is more advanced, more tightly bound to the machine, than the

Process kernel
• Aim for CPU Utilisation to be in the 80-95% range; it is an unyielding Database Server.
• Not yielding the CPU is a design principle, it avoids o/s level Context Switches, which

are expensive
• runnable process search count is replaced with idle timeout (ThreadPool

level) which is used to hold the CPU while it searches for runnable Tasks. After which it
➄ yields the CPU.

• Configure the fewest Threads in ASE for the load, and an idle timeout. that is:
• neither too small (results in premature CPU yields)
• nor too large (results in consuming CPU cycles for nothing, high CPU Usage with no

proportionate return).

5

Exhausted2

After resource wait is complete
Scheduled4

EngineThread Available1 3 Context Switch
Cache Miss
Disk Device
Disk System Write
Exceed BatchSize
Lock Normal
Lock APL Index
Lock Latch
Lock LW Protection
Log Group Commit

Log IO Structure
Log Last Page Write
Network Receive
Network Send
Network Sleep
Other
User Log Cache
Voluntary Yield

The Limit Scaled
• Task::Network & Task::Disk I/O affinity (being bound to the initiating

Engines for the Task) has been eliminated
• Network & Disk I/O latency has been eliminated
• This exposes slow networks and SANs even more acutely than before!
• The Architecture substantially reduces Shared Memory contention, and

thus the need for Spinlocks
• Now for the next architectural limit to be determined !

The Wall Flattened
• The negative effect that the absence of Load Distribution has on large

servers has been eliminated, such configuration is no longer essential. It
does remain as the method for Load Distribution at the processor level.

• While the removal of the psychological Wall is Good News for naïve
Administrators, it is of course still possible to implement a poor
configuration that hinders performance, such as oversubscribing a server,
or starving it of resources, or strangling it at the I/O level.

1 This is possible in the Threaded Kernel, because all threads belong to a single Process.

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

Derek Asirvadem • V2.0 • 19 Dec 13 Sybase ASE Architecture • 10 of 10

Sybase ASE Architecture
Threaded • Execution

Copyright © 2013 Software Gems Pty LtdDerek Asirvadem

Unix

ASE
Shared

Memory

Binary 326MB

This shows a selection (not all!) of execution paths, providing an indication of interaction between the components,
particularly the changed paths.

ASE V15.7 & subsequent

Client

Network

Program

Remote Server

Open
Server

Client
Lbrary

Client App Server

DNPS Default Network Packet Size
STLC Session Tempdb Log Cache
SG Stack Guard

Single
Process
Single
Process

Procedure
Cache

Statement Cache
Additional Network

Named Cache Q
Log Cache

Named Cache P LIO

Default
Data

Cache

Tempdb Cache

Page RowTable

Network
Listener

Object
Index

Partition

Database
Open

Network
 Merge

Disk I/O
Structure

Hit

Miss

Wash

LRU

I/OBlocking

Disk I/O
Structure

Other
Structure

[21]

Mon Pipes

Device

Per Connection

STLC

Stack SG

DNPS x 3
Heap

Monitor SQL

User Log Cache

Sleep

Worker Pool

Run

Engine

Log I/O Structure
Per Db

Coordintr

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Deadlock Tune

HK Garbage Collector

Licence Heartbeat

Port Manager

Network Handler

Mirror Handler

Housekeeper Chores

ASTC Handler

DTC Commit Service

Shutdown HandlerALS ULC Flusher

ALS Log Writer

All Tasks are internal, visible
Smaller size indicates Server Task

ASE Internal Task
User
Running

User
Sleeping

Task

Task

Task

Task

Checkpoint Sleep

Housekeepr Wash

Lock Wait

Lock Acquired

I/O Wait

I/O Returned

ThreadThread

ThreadThread ThreadThread

ThreadThread

ThreadThreadThreadThread

ThreadProcess

Unix

ThreadThread

Warning
• If your 15.5 configuration was poor, do not migrate the problem to the Threaded Kernel, the errors will be

magnified. Fix that first.
• If you do not understand the 15.5 Kernel, and cannot configure it properly for your machine and your load, you

will not be able to configure the Threaded Kernel. If you can't ride a highly-strung horse without drama by
yourself, it is not reasonable to attempt show-jumping.

• The consequence of this Kernel being so advanced and powerful, and ASE being so configurable, is that gross
configuration errors will cause it to (a) run into race conditions, such as high CPU Usage with little work being
completed, or (b) run slower, and with reduced throughput.

• Sybase ASE is not a circus with hundreds or thousands of clowns, it is a performance by a few star performers,
and highly configurable. You must decide what kind of race you are running, and configure the server
accordingly. The configuration required for a sprint vs a marathon vs a 1,500m race, are quite different.

Execution
Data

Path

 Disk Handler
Fetch

Asynch
I/O

Returned
Write

Asynch

Lock
Manager

mailto:derek@softwaregems.com.au?Subject=Sybase%20ASE%20Architecture/Page%20

