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5 Collection of Tables and Views
• No Direct INSERT/UPDATE/DELETE
• Trusted Access:

GRANT SELECT, REFERENCES TO ALL
• Non-trusted Access:

GRANT SELECT, REFERENCES TO <role>
GRANT <role> to <login>

6 Collection of Transactions (sprocs).  
• This is the Database API

GRANT EXEC ON <proc> TO <role>
GRANT <role> to <login>

• The "Updatable View problem" is eliminated

1 Use <role/login> over <group/user>
2 All GRANTS to <role> only

No direct GRANTS to <login>/<user>
3 Maintenance by dbo only

No dbo GRANTS to <login>, <user>
4 Humans must use real <login>;

• may be privileged
Batch jobs must use non-human <login>
• unprivileged

Access & Security

• Complies with all aspects of Dr E F Codd's Relational Model (not the pretenders, not the "theoreticians")
• Not only with Codd's famous Twelve Rules, but all 57 rules in the Relational Model

• The database is completely Normalised
• Full 3NF per Codd, far more than "5NF"
• Genuine DKNF (per Codd intention, not the deranged mathematical definition) is supplied, but this is not commonly understood
• No Nulls or ambiguities are stored ("6NF" is used in a fuller sense)

• Complete Data Independence: 
• The database is truly independent of all applications
• All database Consistency, including Data Integrity (both Referential and Relational Integrity), is controlled within the database, via Relational Keys & 
Constraints per Codd intention.  All such definitions are Declarative

• All updates to the database via ACID Transactions only, which can be executed from any application
• Transactions are implemented as stored procs.  This set of stored procs constitute the Database API (methods)
• High Concurrency (low contention) is supplied through OLTP Standards

• Views are not required, however, to provide simplified access to data, a full set of Views is supplied
• The result is that most readers will access the data via Views, rather than accessing the 'raw' tables
• Additional Views may be created

• Thus the database is defined Declaratively, and it is completely self-contained, with a view to backup, DR, transport, etc.
• An App Server is recommended for high-volume web applications.

• For 4GL applications, the Non Visual Objects are deployed in the application (2 Tier) or Web server (3 Tier)

Relational Database • OLTP

• OLTP and OLAP are supplied from the one database (a separate server; database; and the attendant synchronisation problems; etc, are not required)
• All nominated Dimensions are supported (if the database is correctly Normalised, the Logical Structure reflects the Dimensions)
• Pivoting is provided for nominated tables

• Any Report tool may be used directly with the database
• A high-end Report tool is not required

• Tempdb is not used in the delivered application & reports (it may be used in other applications or reports)

Relational Database • OLAP

• The absence of any of the above facilities results in a non-compliant implementation, that will be difficult-to-impossible to enhance and expand, depending on 
the level of non-compliance. 

• However, in the common case, the architecture, the deployment of functional components, is entirely absent.  Such implementations are Non-architecture, they 
cannot be construed as a "closed architecture" because there is none.  Commonly, the app is a single massive software stack, a monolith, with a few rules and 
constraints, but these are outside the database.  The result being a "database" that is accessible only through the app, the opposite of Open Architecture.

• Further, the "database" is in fact a pre-Relational, pre-Hierarchical, 1960's Record Filing System, with no Relational Integrity, Power or Speed.  This is due to 
the post-Codd authors, the "theoreticians", who expound such primitive methods, and fraudulently market them as "relational".

Non-architecture

• This document defines the facilities that 
must be implemented in order to comply 
with Open Architecture Standards.

• Architecture consists of the proper 
separation of functional components, 
thence their deployment, based on the 
platforms that are available.  That is, 
Normalisation of the software 
componentry.
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