
Three Tier Architecture
Open Architecture

Derek Ignatius Asirvadem • 11 Apr 16 Three Tier Architecture • 1 of 2Copyright © 2016 Software Gems Pty Ltd

Host System

Sybase ASE

PCPCPCPC

Host System

App
Server

Relational
Database

PC

Smart DumbSmart DumbSmart

PC

Dumb

5 Collection of Tables and Views
• No Direct INSERT/UPDATE/DELETE
• Trusted Access:

GRANT SELECT, REFERENCES TO ALL
• Non-trusted Access:

GRANT SELECT, REFERENCES TO <role>
GRANT <role> to <login>

6 Collection of Transactions (sprocs).
• This is the Database API

GRANT EXEC ON <proc> TO <role>
GRANT <role> to <login>

• The "Updatable View problem" is eliminated

1 Use <role/login> over <group/user>
2 All GRANTS to <role> only

No direct GRANTS to <login>/<user>
3 Maintenance by dbo only

No dbo GRANTS to <login>, <user>
4 Humans must use real <login>;

• may be privileged
Batch jobs must use non-human <login>
• unprivileged

Access & Security

• Complies with all aspects of Dr E F Codd's Relational Model (not the pretenders, not the "theoreticians")
• Not only with Codd's famous Twelve Rules, but all 57 rules in the Relational Model

• The database is completely Normalised
• Full 3NF per Codd, far more than "5NF"
• Genuine DKNF (per Codd intention, not the deranged mathematical definition) is supplied, but this is not commonly understood
• No Nulls or ambiguities are stored ("6NF" is used in a fuller sense)

• Complete Data Independence:
• The database is truly independent of all applications
• All database Consistency, including Data Integrity (both Referential and Relational Integrity), is controlled within the database, via Relational Keys &
Constraints per Codd intention. All such definitions are Declarative

• All updates to the database via ACID Transactions only, which can be executed from any application
• Transactions are implemented as stored procs. This set of stored procs constitute the Database API (methods)
• High Concurrency (low contention) is supplied through OLTP Standards

• Views are not required, however, to provide simplified access to data, a full set of Views is supplied
• The result is that most readers will access the data via Views, rather than accessing the 'raw' tables
• Additional Views may be created

• Thus the database is defined Declaratively, and it is completely self-contained, with a view to backup, DR, transport, etc.
• An App Server is recommended for high-volume web applications.

• For 4GL applications, the Non Visual Objects are deployed in the application (2 Tier) or Web server (3 Tier)

Relational Database • OLTP

• OLTP and OLAP are supplied from the one database (a separate server; database; and the attendant synchronisation problems; etc, are not required)
• All nominated Dimensions are supported (if the database is correctly Normalised, the Logical Structure reflects the Dimensions)
• Pivoting is provided for nominated tables

• Any Report tool may be used directly with the database
• A high-end Report tool is not required

• Tempdb is not used in the delivered application & reports (it may be used in other applications or reports)

Relational Database • OLAP

• The absence of any of the above facilities results in a non-compliant implementation, that will be difficult-to-impossible to enhance and expand, depending on
the level of non-compliance.

• However, in the common case, the architecture, the deployment of functional components, is entirely absent. Such implementations are Non-architecture, they
cannot be construed as a "closed architecture" because there is none. Commonly, the app is a single massive software stack, a monolith, with a few rules and
constraints, but these are outside the database. The result being a "database" that is accessible only through the app, the opposite of Open Architecture.

• Further, the "database" is in fact a pre-Relational, pre-Hierarchical, 1960's Record Filing System, with no Relational Integrity, Power or Speed. This is due to
the post-Codd authors, the "theoreticians", who expound such primitive methods, and fraudulently market them as "relational".

Non-architecture

• This document defines the facilities that
must be implemented in order to comply
with Open Architecture Standards.

• Architecture consists of the proper
separation of functional components,
thence their deployment, based on the
platforms that are available. That is,
Normalisation of the software
componentry.

NVO

Transactions Views

NVO

Report
Client3 Tier

App A

2 Tier
App C 2 Tier

App D
Report
Client

Cache

3 Tier
App B

Normalised Tables
Keys, Foreign Keys
Indices
Constraints
Rules

InterNet Corporate LAN

